Reconciling Dwarf Galaxies with LCDM Cosmology

Andrew Wetzel

Moore Prize Fellow

Carnegie Fellow in Theoretical Astrophysics

Caltech

with the RE collaboration

cosmological structure formation

Magellanic Clouds: 1 billion stars

Triangulum II: 500 stars

dwarf galaxies: the most dark-matter dominated systems

also Walker et al 2009, 2010

The Local Group

limited observational completeness of dwarf galaxies

exciting era for dwarf galaxies and near-field cosmology!

dwarf galaxies present the most significant challenges to the Cold Dark Matter (CDM) model

(nearly) self-similar structure formation in CDM

"missing satellites" problem: too few observed satellites compared with dark-matter subhalos in CDM

"too big to fail" problem: dark-matter subhalos in CDM are too dense compared with observed satellite galaxies

"core-cusp" problem: inner density slope of observed galaxies is too shallow vs dark-matter (sub)halos in CDM

dwarf galaxies: the most significant challenges to the Cold Dark Matter (CDM) model

"missing satellites" problem

(probably) too few observed satellite galaxies compared with dark-matter subhalos in CDM

—> Can a CDM-based model produce a satellite stellar mass function as observed?

"too big to fail" problem

dark-matter subhalos in CDM are too dense compared with observed satellite galaxies

—> Can a CDM-based model produce a satellite dynamical mass (velocity dispersion) function as observed?

dwarf galaxies: the most significant challenges to the Cold Dark Matter (CDM) model

possible solutions

- dark matter is not "standard" CDM examples:
 - A. warm dark matter
 - B. self-interacting dark matter
- baryonic physics
 stellar feedback —> gas outflows —> dark matter cores

cosmological hydrodynamic simulations of Milky Way-mass galaxy to z = 0

The Latte Project: the Milky Way on FIRE

simulating a Milky Way-mass galaxy with a realistic population of satellite dwarf galaxies at parsec resolution

Wetzel et al 2016, ApJL submitted, arXiv:1602:05957

model for star formation

- Ultra-high resolution
 - \circ m_{gas} = 7000 M_{sun}
 - $h_{gas} = 1 pc (h_{dm} = 20 pc)$
 - captures multi-phase inter-stellar medium
- Cooling from atoms, molecules, and 9 metals down to 10 K
- Star formation only in self-gravitating clouds: n_H > 100 cm⁻³
- Star formation efficiency: 100% per free-fall time

model for stellar feedback

• Heating:

- Supernovae: core-collapse (II) and la
- Stellar Winds: massive O-stars & AGB stars
- Photoionization (HII regions)

Radiation Pressure

$$\dot{P}_{\rm rad} \sim \frac{L}{c} \left(1 + \tau_{\rm IR} \right)$$

Supernovae

$$\dot{P}_{\rm SNe} \sim \dot{E}_{\rm SNe} \, v_{\rm ejecta}^{-1}$$

Stellar Winds

$$\dot{P}_{\rm W} \sim \dot{M} \, v_{\rm wind}$$

cosmological zoom-in simulation to achieve ultra-high resolution

top500.org

RANK	SITE	SYSTEM	CORES	RMAX (TFLOP/S)	RPEAK (TFLOP/S)	POWER (KW)
1	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
5	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945
6	DOE/NNSA/LANL/SNL United States	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Aries interconnect Cray Inc.	301,056	8,100.9	11,078.9	
7	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect , NVIDIA K20x Cray Inc.	115,984	6,271.0	7,788.9	2,325
8	HLRS - Höchstleistungsrechenzentrum Stuttgart Germany	Hazel Hen - Cray XC40, Xeon E5-2680v3 12C 2.5GHz, Aries interconnect Cray Inc.	185,088	5,640.2	7,403.5	
9	King Abdullah University of Science and Technology Saudi Arabia	Shaheen II - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Aries interconnect Cray Inc.	196,608	5,537.0	7,235.2	2,834
10	Texas Advanced Computing Center/Univ. of Texas United States	Stampede - PowerEdge C8220, Xeon E5- 2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P Dell	462,462	5,168.1	8,520.1	4,510
11	Forschungszentrum Juelich (FZJ) Germany	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	458,752	5,008.9	5,872.0	2,301

massively parallel: 2048 cores

wall time:

22 days

CPU time:

1.1 million hours

Latte: cosmological zoom-in simulation

Latte: cosmological zoom-in simulation

dark matter-only simulation

dark matter with effects of baryons

stars

12 kpc

 $M_{star} = 9x10^{10} M_{sun}$

 $SFR = 3.4 M_{sun}/yr$

The Latte Project: the Milky Way on FIRE

Population of satellite dwarf galaxies

stellar mass function of satellites

stellar mass function of satellites

stellar velocity dispersion function of satellites

stellar velocity dispersion function of satellites

velocity dispersion - mass relation

velocity dispersion - mass relation

mass - metallicity relation

mass - metallicity relation

diverse range of star-formation histories of satellite dwarf galaxies

diverse range of star-formation histories of satellite dwarf galaxies

What causes the lack of (massive) satellite dwarf galaxies around the Milky Way-mass host?

- Stellar feedback forms dark-matter cores by driving significant gas outflows/inflows that transfer orbital energy to dark matter
- 2. Stellar disk of the Milky Way-mass host galaxy destroys satellites (via tidal shocking, etc)

inclusion of baryons destroys dark-matter subhalos

subhalo number density profile

dark-matter halo mass function

dark-matter subhalo mass function

satellite mass function

stellar feedback can produce dark-matter cores in isolated dwarf galaxies

simulated dwarf galaxies have bursty star formation

feedback-driven gas outflows in dwarf galaxies

fluctuations in galaxy radius at fixed Mstar

stellar feedback drives orbital anisotropy and dispersion

detailed stellar kinematics in nearby dwarf galaxies will provide **robust** tests of feedback models and the origin of dark-matter cores

A Modest Proposal

```
"LCDM prodicts..."
(dark exercity by 4- cold dark matter)
```

```
"LCDMB predicts..."

(dark energy + cold dark matter + baryons)
```

The Latte Project: the Milky Way on FIRE

