Facets of Cosmic Accretion

Dark Matter Baryons Satellite Galaxies in the Local Group

Andrew Wetzel

Carnegie Fellow in Theoretical Astrophysics Carnegie Science

THE OBSERVATORIES

Part I

The Physical Nature of Cosmic Accretion of Baryons & Dark Matter into Halos and their Galaxies

with Daisuke Nagai (Yale University)

Wetzel & Nagai 2014 arXiv:1412:0662

Outline

- 1. Background on Halo Formation & Cosmic Accretion
- 2. Physical Cosmic Accretion of Dark Matter
- 3. Physical Cosmic Accretion of Baryons
- 4. Physical Meaning of the Virial Radius

"Virial Radius" = R_{200m} = within which the average density is 200x cosmic matter density

"Virial Mass" = M_{200m} = mass within R_{200m}

Standard picture of cosmic accretion into halos

Physical nature of cosmic accretion into galactic halos

Evolution of dark matter in Milky-Way-mass halos

Mass evolution: physical vs definitional "Pseudo-evolution" Diemer, More & Kravtsov 2013

Simple idealized model for virial infall

Adhikari, Dalal & Chamberlain 2014

based on:

Gunn & Gott 1972 Fillmore & Goldreich 1984

$$\frac{\mathrm{d}^2 r}{\mathrm{d}t^2} = -\frac{G m(< r)}{r^2} + \frac{8\pi G}{3} \rho_{\Lambda} r$$

Phase space in cosmological N-body simulation

Outline

- 1. Background on Halo Formation & Cosmic Accretion
- 2. Physical Cosmic Accretion of Dark Matter
- 3. Physical Cosmic Accretion of Baryons
- 4. Physical Meaning of the Virial Radius

Cosmological hydrodynamic simulations

- ART Adaptive Eulerian Mesh code
- 36 Mpc box
- Particle mass: dark matter ~10⁷ M_{sun}, stars ~10⁶ M_{sun}
- Spatial resolution = 500 pc
- Suite of varying physics:
 - 1) dark matter only
 - 2) non-radiative gas
 - 3) gas with radiative cooling
 - 4) star formation & feedback:
 supernova II & Ia, stellar mass loss, metal enrichment

Physical Cosmic Accretion of Dark Matter

from simulation with only dark matter

Late-time stellar mass growth is important

Most galaxies formed majority of their stellar mass at z < 1

Observations: strong connection between galaxy mass & halo mass

Outline

- 1. Background on Halo Formation & Cosmic Accretion
- 2. Physical Cosmic Accretion of Dark Matter
- 3. Physical Cosmic Accretion of Baryons
- 4. Physical Meaning of the Virial Radius

Physical Cosmic Accretion of Baryons

- 1. Impact of Gas Physics
- 2. Trends with star formation + stellar feedback

Physical accretion of gas & dark matter

from simulation with gas - non-radiative

Physical accretion of gas & dark matter

from simulation with gas - radiative cooling

Physical Cosmic Accretion of Baryons

- Impact of Gas Physics
- 2. Trends with star formation + stellar feedback

Physical accretion of baryons & dark matter

from simulation with star formation + feedback

Physical significance of R_{200m}?

Physical accretion of baryons & dark matter

from simulation with star formation + feedback

Physical accretion of baryons & dark matter

from simulation with star formation + feedback

Summary: Physical Accretion of Dark Matter & Gas

- Dark Matter growth is subject to pseudo-evolution
 - at z <~ 1, no significant growth of density/mass at any radius

- Baryonic growth is not subject to pseudo-evolution
 - Physical growth at all radii because gas is dissipational
 - Accretion rate at all radii (roughly) tracks that at R_{200m}

 Most meaningful radius to measure cosmic accretion of both dark matter & gas is 2 R_{200m}

Part II

Satellite Dwarf Galaxies in the Local Group

with Alis Deason (Santa Cruz), Shea Garrison-Kimmel (Irvine), Erik Tollerud (Yale), Dan Weisz (Washington), Vasily Belokurov (Cambridge), Phil Hopkins (Caltech)

Deason, Wetzel & Garrison-Kimmel 2014 Wetzel, Deason & Garrison-Kimmel 2015 Wetzel, Tollerud & Weisz 2015 Deason, Wetzel, Garrison-Kimmel & Belokurov 2015

The Local Group

Star formation in dwarf galaxies in the Local Group

Star-formation histories at different masses

Weisz et al 2014

ELVIS Suite

Cosmological zoom-in *N*-body simulations of Local-Group-like halo pairs

Garrison-Kimmel et al 2013

When did satellite galaxies fall into MW halo?

Ultra-faint dwarf galaxies quenched via reionization (+ feedback) and not via the MW halo environment

Group preprocessing of satellite dwarf galaxies

Discovery of several dwarf galaxies near the LMC

How many dwarf galaxies are satellites of LMCs in LCDM?

Deason, Wetzel, Garrison-Kimmel, & Belokurov 2015 (out today)

Groups of satellite dwarf galaxies are dissociated by MW tidal field over time

Deason, Wetzel, Garrison-Kimmel, & Belokurov 2015 (out today)

Predictions: which dwarfs were satellites of LMC

Name	$egin{array}{c} \Delta \mathrm{R} \ [\mathrm{kpc}] \end{array}$	$\mathbf{P}_{\mathrm{LMC \; sat}}$	$egin{array}{c} \mathbf{P}_{\mathrm{LMC \; sat}} \ \mathbf{(T_{\mathrm{infall}} < 2 \; Gyr)} \end{array}$
Reticulum 2	23.9	0.38	0.65
Eridanus 2	337.4	0.02	0.01
Horologium 1	38.5	0.31	0.57
Pictoris 14.8	70.0	0.19	0.41
Phoenix 2	54.3	0.23	0.49
Indus 1	80.0	0.18	0.37
Grus 1	92.8	0.16	0.31
Eridanus 3	48.2	0.26	0.52
Tucana 2	36.7	0.32	0.58
	Total:	2.0	3.9

Satellite Dwarf Galaxies in the Local Group

- None of the ultra-faint satellites of MW today were in/near MW halo at z > 6
 - Star-formation quenched via reionization and not via MW halo environment
- >50% of all satellites in MW/M31 with M_{star} < 10⁶ M_{sun} were preprocessed in a group before falling into MW/M31 halo
- ~4 of the newly discovered dwarf galaxies near LMC were satellites of LMC prior to MW infall