The Hunt for Dark Matter - Insights from N-body Simulations -

Mark Vogelsberger

Max Planck Institute for Astrophysics

Outline

Introduction - Hunting for Dark Matter

High resolution N-body simulations

Local CDM phase-space structure

Very-small-scale CDM phase-space structure

ACDM – the current standard

The Hunt for Dark Matter - Direct Detection -

WIMP searches: nuclear recoil events

Axion searches: axion-photon conversion

Usually assumed astrophysical input:

Density: $\sim 0.3 \text{ GeV} / \text{c}^2 / \text{cm}^3$

Velocity: Maxwellian

Standard Halo Model (SHM):

- Smooth mass distribution
- Smooth velocity distribution
- •"Featureless" phase-space

"Non-standard" Halo models

N-body simulations predict lots of phase-space substructure

Diemand et al, Nature (2008)

Van Bibber, IDM (2008)

Analytic models; massive streams; Caustic ring model

Arising questions

Q1: How smooth is the dark matter mass distribution at the solar position?

Q2: How smooth is the dark matter velocity distribution at the solar position?

Q3: Does the halo formation process leave "observable" imprints?

How to answer these questions?

- DM phase-space on smallest scales
- in highest non-linear regime

The Aquarius Project

- a large-scale collaborative program of the Virgo Consortium -

Springel et al, Nature (2008)

Springel et al, MNRAS (in press)

Navarro et al, MNRAS (submitted)

High resolution simulations of Milky Way-like Dark Matter haloes

a one billion particle halo with two goals in mind:

quantity

AND

quality

$m_{ m p}$	ϵ
$[{ m M}_{\odot}]$	[pc]
1.712×10^3	20.5
1.370×10^{4}	65.8
4.911×10^{4}	120.5
3.929×10^{5}	342.5
3.143×10^{6}	684.9

http://www.mpa-garching.mpg.de/aquarius

[further information, pictures, movies]

Object-to-Object scatter ?!

Q1: Density PDF convergence

Q1: Density PDF: object-to-object scatter

Q1: Intrinsic density fluctuations

Scatter standard deviation < 5%

Experimentalists can use smooth models

Q2: Velocity vector components

Q2: Convergence of the modulus

Velocity distribution at different positions and different resolutions

Features in velocity distribution converge

Q2: Modulus at different locations

Velocity distribution: many 2kpc boxes

Bumps in velocity modulus at ~the same velocity

Not Maxwellian

Not exactly multivariate Gaussian

Q2: Mean velocity distribution

mean velocity distribution

relative deviations: larger at high velocities

Q3: Local Phase-space density

$$f(E) = \frac{\mathrm{d}M}{\mathrm{d}E} \frac{1}{g(E)}$$
 Density of states

Nearly universal shape at high binding energy

Large fluctuations at lower binding energies

Q3: Phase-space density time evolution

$$z=0.1 \longrightarrow z=0$$

Fluctuations in less bound part

Features in most bound part are stable

Q3: Phase-space density accretion history

"quiet" formation history

"active" formation history

Q3: Influence of single merger events

"active" formation history

Q3: Signatures in detector signals

WIMP recoil spectrum

Axion microwave spectrum

Conclusions: local phase-space

- dark matter mass distribution is very smooth
- dark matter velocity distribution smooth; no sign for massive streams; significant deviations from multivariate Gaussian
- velocity modulus shows features in form of bumps/dips
- formation history leaves imprints in the energy distribution

"Dark Matter Astronomy"

CDM – the very-small-scale structure

CDM is **cold** and **collisionless**

CDM lies on 3D hypersurface in 6D phase-space

Thickness of line:

primordial velocity dispersion

Amplitude of wiggles:

velocity due to density perturbations

Wind-up:

growth of an overdensity

Phase space sheet:

$$(\vec{r}, \vec{v}): H(t)\vec{r} + \Delta \vec{v}(\vec{r}, t)$$

Caustics are regions of very high CDM density

Caustics

Caustic impact on: annihilation, ...?

Resolving caustics in N-body simulations

<u>Problem:</u> Standard N-body simulations cannot resolve caustics (in the sense of fine-grained caustics)

Solution: Follow the local phase-space evolution for each particle

calculation of stream density

identification of caustics

- Monte-Carlo estimate for intra-stream annihilation
- -missing in standard N-body annihilation calculations
- -allows caustic annihilation calculation in N-body simulations

$$\frac{\mathrm{d}\mathcal{A}_{s,i}}{\mathrm{d}t} = \frac{\langle \sigma v \rangle_{\chi}}{m_{\chi}^2} m_i \rho_{s,i}$$

local stream density

Regularization of caustics

Mathematically: caustics have an infinite real-space density

Physically: regularization by finite velocity dispersion

Application: Annihilation radiation

Self-similar infall in N-body code (1D gravity)

(outer) caustic spheres

Caustic density – 1D vs. 3D

1/t stream density decrease

1/t³ stream density decrease **3D**

Caustic structure – 1D vs. 3D

Conclusions: very-small-scale structure

- caustics can now be resolved in N-body simulations
- caustics do not form simple, dense geometrical structures
- 1D models overestimate the maximum density of caustics
- it seems that caustics do not provide a strong boost of the diffuse emission in the inner halo regions, no massive rings