Cosmic Team Play: how cross-correlations can help a more comprehensive understanding of the universe

Alberto Vallinotto
UC Berkeley and LBNL

Elephants and spherical cows

- As scientists, we have an almost natural tendency toward "spherical cows": isolating only the relevant aspects of a system/phenomenon.
- A more comprehensive understanding can sometimes arise from a <u>broader</u> <u>perspective</u>, considering the interaction of aspects that may, at first sight, seem unrelated.

Why is this interesting?

- I. Cross-correlations can allow the extraction of astrophysical and cosmological information from what is normally considered "noise".
- Different experiments/data sets are characterized by different systematics. Cross-correlations can sometimes mitigate their impact.

Outline

- An introductory example:
 Type la Supernovae and weak lensing
- Redshift Space Distortions
- CMB lensing and the extraction of biasing relations:
 - CMB lensing and the Lyman-α forest.
 - CMB lensing and galaxy redshift surveys

Outline

- An introductory example:
 Type la Supernovae and weak lensing
- Redshift Space Distortions
- CMB lensing and the extraction of biasing relations:
 - CMB lensing and the Lyman-α forest.
 - CMB lensing and galaxy redshift surveys

A first example: lensing of SNIa

• Weak lensing alters the luminosity of SNIa's: the scatter of μ is sensitive to an intrinsic component $\delta\mu_i$ and to a lensing contribution $\delta\mu_{cos}$

$$\mu = \mu_0 + \delta \mu_i + \delta \mu_{\cos}$$

A first example: lensing of SNIa

• Weak lensing alters the luminosity of SNIa's: the scatter of μ is sensitive to an intrinsic component $\delta\mu_i$ and to a lensing contribution $\delta\mu_{cos}$

$$\mu = \mu_0 + \delta \mu_i + \delta \mu_{\cos}$$

• The pdf for $\delta\mu_{cos}$ depends on Ω_m and σ_8 can be calculated [Valageas 1999,2000, Munshi and Jain 2000, Wang et al. 2002, Holz and Linder 2004, Das and Ostriker 2006].

A first example: lensing of SNIa

• Weak lensing alters the luminosity of SNIa's: the scatter of μ is sensitive to an intrinsic component $\delta\mu_i$ and to a lensing contribution $\delta\mu_{cos}$

$$\mu = \mu_0 + \delta \mu_i + \delta \mu_{\cos}$$

- The pdf for $\delta\mu_{cos}$ depends on Ω_m and σ_8 and can be calculated [Valageas 1999,2000, Munshi and Jain 2000, Wang et al. 2002, Holz and Linder 2004, Das and Ostriker 2006].
- If properly calibrated on simulations, the knowledge of the pdf for $\delta\mu_{cos}$ can be used to extract the Ω_m and σ_8 dependence (for free!)

A few things we've learned...

- I. We can only observe the universe through an inhomogeneous medium.
- 2. Whether something can be considered "information" or "noise" is mostly a matter of taste (or focus).
- 3. If we are <u>clever and "lucky"</u> we can turn this to our advantage, extracting information from the "noise".

Observing the universe through an inhomogenous medium

- Structure forms through gravitational collapse...
- ... starting from initial conditions consistent with CMB.

[Kravtsov, 2005]

Observing the universe through an inhomogenous medium

- Structure forms through gravitational collapse...
- ... starting from initial conditions consistent with CMB.
- Simulations results are consistent with observational evidence from LSS surveys on large scales.

[Springel et al., 2005]

Observing the universe through an inhomogenous medium

- Dark matter structure provides the scaffolding over which most of other structure forms.
- The dark matter power spectrum is mostly sensitive to the cosmology and to the physics of structure formation (ie gravity).
- Intuitively, on large enough scales overdensities in the DM field should be matched by overdensities in the other "visible stuff" (galaxies/quasars, Lyman-α, HI,...).
- The "biasing relation" between the tracers and the DM field therefore contains astrophysical information about the former: how baryons cluster and form structure.
- Different tracers allow to probe the DM field on different scales.

A few things we've learned...

- I. We can only observe the universe through an inhomogeneous medium.
- 2. Whether something can be considered "information" or "noise" is mostly a matter of taste (or focus).
- 3. If we are <u>clever and "lucky"</u> we can turn this to our advantage, extracting information from the "noise".

Outline

- An introductory example:
 Type la Supernovae and weak lensing
- Redshift Space Distortions
- CMB lensing and the extraction of biasing relations:
 - CMB lensing and the Lyman-α forest.
 - CMB lensing and galaxy redshift surveys

Redshift space distortions

- Noise: observed galaxy positions are distorted by the component of their peculiar velocity parallel to the line of sight.
- RSD arise from the interplay between the density and velocity fields.

Using "noise" to probe cosmology

- Information: the velocity field is sensitive to the growth of structure.
- RSD allow to probe structure growth and, through that, cosmology and gravity.

$$P_{gg}(k,\mu)=(b+f\mu^2)^2P_{\delta\delta}(k)$$
 [Kaiser, 1987] bias
$$f=\frac{d\ln(D)}{d\ln(D)}\sim\Omega_m(a)^{\gamma}$$

[Hume Feldman]

Using "noise" to probe cosmology

- Information: the velocity field is determined by the growth of structure.
- RSD allow to probe cosmology and gravity through structure growth.
- Several complementary approaches (Seljak++ 2012, Kwan++ 2012, Reid and White 2011). We consider two in particular:
 - Distribution function approach (SMD): useful to understand the physics.
 - Reconstruction function approach (KLL): useful to extract the cosmology.

Distribution function approach (Seljak, McDonald++)

- Starts considering the distribution function of particles in phase space $f(\vec{x}, \vec{q}, t)$, whose dynamics is determined by the Vlasov-Poisson equation.
- It defines the following n-rank tensors, effectively decomposing the distribution function into its helicity states $T^n_{i_1,i_2,...,i_n}(\vec{x}) \equiv \frac{m}{\bar{o}} \int d^3\vec{q} \, f(\vec{x},\vec{q}) \, u_{i_1} \, u_{i_2} \, ... u_{i_n}$

$$T_{i_1,i_2,...,i_n}^n(\vec{k}) = \int d^3\vec{x} \, e^{i\vec{k}\cdot\vec{x}} T_{i_1,i_2,...,i_n}^n(\vec{x})$$

• Then it expands the redshift space density field in angle as

$$\delta_s(\vec{k}) = \sum_n \frac{1}{n!} \left(\frac{ik\mu}{aH} \right)^n T_{\parallel}^n(\vec{k})$$

- Defining the power spectra of the different tensors as $P^{ab}(\vec{k})\delta_D(\vec{k}-\vec{k'}) \equiv \langle T^a_{\parallel}(\vec{k})T^{*b}_{\parallel}(\vec{k}) \rangle$
- The redshift space power spectrum of the density field is

$$P(\vec{k}) = \sum_{n=0}^{\infty} \frac{1}{(n!)^2} \left(\frac{k\mu}{aH}\right)^{2n} P^{nn}(\vec{k}) + 2 \operatorname{Re} \left[\sum_{a=0}^{\infty} \sum_{b>a}^{\infty} \frac{(-1)^b}{a!b!} \left(\frac{ik\mu}{aH}\right)^{a+b} P^{ab}(\vec{k}) \right]$$

It physically makes a lot of sense!

Reconstruction function approach (Kwan, Lewis and Linder)

• The reconstruction function approach yields the full nonlinear anisotropic redshift power spectrum as a product of the reconstruction function times the nonlinear real space power spectrum.

$$P_{\mathrm{RSD}}(k, \mu, z) = F(k, \mu, z) P_{\delta}(k, z)$$

• Simple fitting form, shown to work at $\sim 1\%$ level with Λ CDM.

$$F(k,\mu) = \frac{1}{1 + Bk^2\mu^2} + Ck^2\mu^2$$

Reconstruction function approach (Kwan, Lewis and Linder)

- Ongoing program for the calibration of $F(k,\mu,z)$ on simulation suite, extending in redshift and cosmology depend.
- Currently developing automated pipeline to extract and calibrate the power spectra and reconstruction function from a large suite of simulations (also for Coyote++ and future suites).
- Goal I: build an emulator for $F(k,\mu,z)$ allowing the solution of the inverse problem: from RSD measurement to cosmology.
- Goal 2: extend the reach with new suite of simulations (in collaboration with ANL and NERSC).

- Coyote Simulations Suite:
 - 37 cosmologies
 - 1024³ particles
 - Box size: 936 Mpc/h
 - High resolution runs use Gadget-2
 - Initial conditions set at z=211 using ZA.

approach (Kwan, Lewis and Linder)

Ongoing program for the calibration of $F(k,\mu,z)$ on simulation suite, extending in redshift and cosmology depend.

- Currently developing automated pipeline to extract and calibrate the power spectra and reconstruction function from a large suite of simulations (also for Coyote++ and future suites).
- Goal I: build an emulator for $F(k,\mu,z)$ allowing the solution of the inverse problem: from RSD measurement to cosmology.
- Goal 2: extend the reach with new suite of simulations (in collaboration with ANL and NERSC).

Coyote Simulations Suite:

z=0

approach (Kwan, Lewis and Linder)

- Ongoing program for the calibration of $F(k,\mu,z)$ on simulation suite, extending in redshift and cosmology depend.
- Currently developing automated pipeline to extract and calibrate the power spectra and reconstruction function from a large suite of simulations (also for Coyote++ and future suites).
- Goal I: build an emulator for $F(k,\mu,z)$ allowing the solution of the inverse problem: from RSD measurement to cosmology.
- Goal 2: extend the reach with new suite of simulations (in collaboration with ANL and NERSC).

Coyote Simulations Suite:

z = 0.43

approach (Kwan, Lewis and Linder)

- Ongoing program for the calibration of $F(k,\mu,z)$ on simulation suite, extending in redshift and cosmology depend.
- Currently developing automated pipeline to extract and calibrate the power spectra and reconstruction function from a large suite of simulations (also for Coyote++ and future suites).
- Goal I: build an emulator for $F(k,\mu,z)$ allowing the solution of the inverse problem: from RSD measurement to cosmology.
- Goal 2: extend the reach with new suite of simulations (in collaboration with ANL and NERSC).

Coyote Simulations Suite:

z = 0.6

approach (Kwan, Lewis and Linder)

- Ongoing program for the calibration of $F(k,\mu,z)$ on simulation suite, extending in redshift and cosmology depend.
- Currently developing automated pipeline to extract and calibrate the power spectra and reconstruction function from a large suite of simulations (also for Coyote++ and future suites).
- Goal I: build an emulator for $F(k,\mu,z)$ allowing the solution of the inverse problem: from RSD measurement to cosmology.
- Goal 2: extend the reach with new suite of simulations (in collaboration with ANL and NERSC).

Coyote Simulations Suite:

z=1.0

approach (Kwan, Lewis and Linder)

- Ongoing program for the calibration of $F(k,\mu,z)$ on simulation suite, extending in redshift and cosmology depend.
- Currently developing automated pipeline to extract and calibrate the power spectra and reconstruction function from a large suite of simulations (also for Coyote++ and future suites).
- Goal I: build an emulator for $F(k,\mu,z)$ allowing the solution of the inverse problem: from RSD measurement to cosmology.
- Goal 2: extend the reach with new suite of simulations (in collaboration with ANL and NERSC).

Coyote Simulations Suite:

z = 1.5

A few things we've learned...

- I. We can only observe the universe through an inhomogeneous medium.
- 2. Whether something can be considered "information" or "noise" is mostly a matter of taste (or focus).
- 3. If we are <u>clever and "lucky"</u> be can turn this to our advantage, extracting information from the "noise".

Outline

- An introductory example:
 Type la Supernovae and weak lensing
- Redshift Space Distortions
- CMB lensing and the extraction of biasing relations:
 - CMB lensing and the Lyman-α forest.
 - CMB lensing and galaxy redshift surveys

The key role of CMB lensing

- In general, weak lensing depends to the density of matter between the observer and the source.
- CMB lensing probes the distribution of matter all the way to the last scattering surface.

The key role of CMB lensing

- <u>CMB lensing</u> depends primarily on CMB physics: it is a relatively clean probe, especially compared to other probes of the density field.
- Optimal quadratic estimators allow the reconstruction of the CMB lensing convergence field [Hu and Okamoto (2000), Hirata and Seljak (2003)].

$$\kappa(\chi_s, \hat{n}) \simeq \frac{3\Omega_{\rm m} H_0^2}{2c^2} \int_0^{\chi_s} d\chi \, \frac{\mathcal{D}(\chi) \mathcal{D}(\chi_s - \chi)}{\mathcal{D}(\chi_s)} \frac{\delta(\chi, \hat{n})}{a(\chi)}$$

Original vs reconstructed deflection field [Hirata and Seljak, 2003]

CMB lensing is here!

 CMB lensing has been detected by ACT, SPT and Planck.

- Planck released <u>noise dominated</u> maps of the deflection potential.
- In the next few years SPTPol and ACTPol will provide detailed maps over fraction of sky.

[Planck, 2013]

The key idea

- CMB lensing measures directly the fluctuations of the density field integrated all the way to the LSS, hence
- cross-correlating any other biased tracer of the density field with CMB lensing allows the extraction of the biasing relation.

Outline

- An introductory example:
 Type la Supernovae and weak lensing
- Redshift Space Distortions
- CMB lensing and the extraction of biasing relations:
 - CMB lensing and the Lyman-α forest.
 - CMB lensing and galaxy redshift surveys

Lyman-\alpha forest and CMB lensing cross-correlation

- Quasar emits light which, as it travels through the universe, is redshifted.
- Whenever light travels through a gas cloud, a fraction of it (that at the cloud's redshift has the appropriate frequency) is scattered through Lymanα transition in neutral hydrogen.
- The quasar spectra is then characterized by a "forest" of "absorption" lines.
- The forest is a map of neutral H along the los.
- Understanding the forest requires understanding and modeling the physics of the IGM.
- Fluctuations in the flux are related to overdensities

$$\mathcal{F} = \exp\left[-A(1+\delta)^{\beta}\right]$$

• On large scales (> I Mpc) the Lyman-α forest can be used as a dark matter tracer [Viel et al. 2001]

$$\delta_{\rm IGM} \approx \delta$$

• The flux-matter relation has many sources of uncertainty.

Lyman-\alpha forest and CMB lensing cross-correlation

What can we hope to learn from this?

- The CMB convergence field K is sensitive only to the DM distribution, hence it's very clean.
- This x-correlation is a completely independent probe that
 - I. provides extra information about the flux-dark matter bias.
 - 2. can in principle probe effects characteristic of small scales (gas dynamics, neutrinos, scale dependent modifications of gravity).

Results: detectability (BOSS+Planck)

[Vallinotto++; PRL (2009)]

- S/N for single line-of-sight. $1.6 \cdot 10^5$ los for Boss, $\sim 10^6$ los for BigBoss.
- Estimates for total S/N are ~30 (75) for $\langle \delta \mathcal{F} \kappa \rangle$ and ~9.6 (24) for $\langle \delta \mathcal{F}^2 \kappa \rangle$ when Planck dataset is xcorrelated with Boss (BigBoss).
- The growth of structure enters twice for $\langle \delta \mathcal{F}^2 \kappa \rangle$: once for the long-wavelengths and once for the short wavelengths. The variance is dominated by long wavelengths only.

 $\langle \delta \mathcal{F}^2 \kappa \rangle$ is sensitive to intermediate to small scales and to the power spectrum normalization σ_8 .

 $\langle \delta \mathcal{F}^2 \kappa \rangle$ is sensitive to intermediate to small scales and to the power spectrum normalization σ_8 .

[Komatsu et al., 2008]

 $\sum m_{\nu}$ and σ_{8} are not independent if they are to be consistent with CMB measurements.

 $\langle \delta \mathcal{F}^2 \kappa \rangle$ is sensitive to intermediate to small scales and to the power spectrum normalization σ_8 .

[Komatsu et al., 2008]

 $\sum m_{\nu}$ and σ_{8} are not independent if they are to be consistent with CMB measurements.

We can use $\langle \delta \mathcal{F}^2 \kappa \rangle$ to put limits on the neutrino mass

[Komatsu et al., 2008]

[Vallinotto++, ApJ 2009]

• Caveat: non-linear effects due to gravitational collapse need to be taken into account.

Caveats

- Semianalytical results currently do not take into account non-linear effects due to gravitational collapse
 - Extension is straightforward
 - Signal is expected to increase, S/N is hard to say.
- All results do not take into account small scales (<1 Mpc) IGM physics and use "gaussian approximation" to evaluate the correlators' variance
- Numerical simulations will be crucial for the calibration of this cross-correlation signal and for the extraction of IGM physics.

Outline

- An introductory example:
 Type la Supernovae and weak lensing
- Redshift Space Distortions
- CMB lensing and the extraction of biasing relations:
 - CMB lensing and the Lyman-α forest.
 - CMB lensing and galaxy redshift surveys

- Consider a galaxy survey aiming at measuring weak lensing through cosmic shear (like CFHT, DES, EUCLID and LSST)
- A critical issue for such surveys is the correction of the distortions of the point spread function.

[Hoekstra et al., 2002]

- Consider a galaxy survey aiming at measuring weak lensing through cosmic shear (like CFHT, DES, EUCLID and LSST)
- A critical issue for such surveys is the correction of the distortions of the point spread function.
- Many different pipelines exist to correct for psf distortions.

[Hoekstra et al., 2002]

[Hohljem et al., 2009]

 Psf correction algorithm are known to introduce <u>biases</u> in the measured ellipticities.

$$\gamma - \gamma^{\text{true}} = q(\gamma^{\text{true}})^2 + m\gamma + c$$

• The shear multiplicative bias m is particularly insidious systematic because it is totally degenerate with σ_8 .

$$\kappa_t(\hat{n},\chi) = \frac{3\Omega_m H_0^2}{2c^2} \int_0^{\chi_F} d\chi \, W_L(\chi,\chi_F) \frac{\delta(\hat{n},\chi)}{a(\chi)}$$

[Heymans et al., 2006]

 Psf correction algorithm are known to introduce <u>biases</u> in the measured ellipticities.

$$\gamma - \gamma^{\text{true}} = q(\gamma^{\text{true}})^2 + m\gamma + c$$

• The shear multiplicative bias m is particularly insidious systematic because it is totally degenerate with σ_8 .

$$\kappa_t(\hat{n}, \chi) = \frac{3\Omega_m H_0^2}{2c^2} \int_0^{\chi_F} d\chi \, W_L(\chi, \chi_F) \frac{\delta(\hat{n}, \chi)}{a(\chi)}$$

 Lack of knowledge/constraint on it can severely degrade the constraining power of shear surveys.

[Heymans et al., 2006]

[Huterer et al., 2005]

 Psf correction algorithm are known to introduce <u>biases</u> in the measured ellipticities.

$$\gamma - \gamma^{\text{true}} = q(\gamma^{\text{true}})^2 + m\gamma + c$$

• The shear multiplicative bias m is particularly insidious systematic because it is totally degenerate with σ_8 .

$$\kappa_t(\hat{n}, \chi) = \frac{3\Omega_m H_0^2}{2c^2} \int_0^{\chi_F} d\chi \, W_L(\chi, \chi_F) \frac{\delta(\hat{n}, \chi)}{a(\chi)}$$

 Lack of knowledge/constraint on it can severely degrade the constraining power of shear surveys.

[Heymans et al., 2006]

[Huterer et al., 2005]

A first solution

• Since we observe the universe through an inhomogeneous medium, lensing acts on all the galaxy observables (ie also on sizes and luminosities).

A first solution

- Since we observe the universe through an inhomogeneous medium, lensing acts on all the galaxy observables (ie also on sizes and luminosities).
- Multiplicative bias acts only on the shear/convergence.

A first solution

- Since we observe the universe through an inhomogeneous medium, lensing acts on all the galaxy observables (ie also on sizes and luminosities).
- Multiplicative bias acts only on the shear/convergence.

• Considering sizes and luminosity information together with shear/convergence allows to constrain m and break the σ_8 degeneracy.

[Vallinotto et al., PRD 2010]

Yes we can: recall the key idea...

- CMB lensing measures directly the fluctuations of the density field integrated all the way to the LSS, hence
- cross-correlating any other biased tracer of the density field with CMB lensing allows the extraction of the biasing relation.

Solution 2: use CMB lensing

- Proof of principle: just consider a single redshift slice, with $z \in [0.9; 1]$ and same characteristics as in the luminosity/size case
- Solid curve: projection for DES + SPTlike

[Vallinotto et al., PRD 2010]

More details and more degeneracies...

- Consider the case of DES (or LSST).
- Include information about galaxy density.
- Include <u>redshift dependent linear galaxy</u>
 <u>bias</u> (important for probing gravity through structure growth).

$$\delta_g(k,z) \equiv b(z)\delta(k,z)$$

- Linear galaxy bias, shear multiplicative bias and σ_8 are all completely degenerate.
- Can we break all these degeneracies?

Fisher calculation

- Observables:
 - CMB lensing convergence (from SPT-SZ or ACTPol-like)
 - Weak lensing convergence (from DES)
 - Galaxy density (from DES-SV or DES)
- All auto and cross-spectra between the observables can be put in the generic form

$$C_{AB}(l) = \int_{0}^{\infty} d\chi \frac{g_{A}(\chi) g_{B}(\chi)}{\chi^{2}} \mathcal{P}_{\delta} \left(\frac{l}{\chi}, \chi\right)$$

$$g_{\kappa}(\chi) \equiv \frac{3\Omega_{m} H_{0}^{2}}{2c^{2}} \frac{D(\chi) D(\chi_{\text{CMB}} - \chi)}{D(\chi_{\text{CMB}}) a(\chi)},$$

$$g_{\bar{\kappa},i}(\chi) \equiv \frac{3\Omega_{m} H_{0}^{2}}{2c^{2} a(\chi) \bar{\eta}_{i}} \int_{\chi}^{\infty} d\chi' \, \eta(\chi') \frac{D(\chi) D(\chi' - \chi)}{D(\chi')},$$

$$g_{\delta,j}(\chi) \equiv \eta(\chi) \, b_{j} \, \Pi(\chi; \chi_{j}, \chi_{j+1}),$$

$$\bar{\eta}_{i} \equiv \int_{0}^{\infty} d\chi \, \eta(\chi) \Pi(\chi; \chi_{i}, \chi_{i+1}),$$

More improvements...

- Sources' redshift distribution dN/dz from DES mocks (determines the noise for galaxy density and cosmic shear measurements).
- CMB lensing reconstruction noise curves for SPT-SZ and for a future 5 uK-arcmin experiment (CMB-X),
- multiple redshift slices, covering DES' dN/dz: 0-0.5-0.8-1-1.3
- Examine constraining power of xcorrelation for
 - breaking degeneracy between multiplicative and galaxy bias and σ_8 .
 - Improvement (?) on the cosmological parameters constraints.

Results

- Cross-correlation of DES-SV and SPT-SZ
- In this case we have only galaxy densities over 150 sq. deg. (DES-SV)
- SPT-SZ provides CMB lensing reconstruction over 2500 sq. deg.

Parameter	DES + SPT-SZ	DES + SPT-SZ
	No Planck prior	Planck Prior
b_0	1.05e-01	3.37e-02
b_1	7.92e-02	4.02e-02
b_2	7.16e-02	5.07e-02
b_3	7.55e-02	4.78e-02

TABLE I: Fractional errors on the galaxy linear biases forecasted at $L_{\text{max}} = 3000$ for DES SV and SPT-SZ.

[Vallinotto, arXiv:1304.3474, submitted to PRL]

Results (2)

- Cross-correlation of DES and CMB-X
- DES footprint: 5k sq. deg.
 CMB-X footprint 4k sq. deg.

-		DEC	D + OI	D + CI	D + CI	D + CI
		DES	D+CL	D+CL	D+CL	D+CL
		Only	No ovlp	Full ovlp	No ovlp	Full ovlp
_					Plnk Prior	Plnk Prior
	σ_8	2.08e-01	7.77e-02	2.59e-02	2.74e-02	1.92e-02
	Ω_m	4.04e-02	3.81e-02	3.16e-02	3.05e-03	2.97e-03
	Ω_b	1.38e-01	1.22e-01	1.05e-01	4.53e-03	4.51e-03
	$N_{ m eff}$	2.09e-01	1.98e-01	1.76e-01	9.22e-02	7.96e-02
	w	4.47e-02	4.12e-02	3.38e-02	3.03e-02	2.23e-02
	n_s	2.31e-02	1.63e-02	1.02e-02	2.40e-03	2.36e-03
	A_s	8.51e-02	5.61e-02	4.29e-02	1.91e-02	1.81e-02
15	h	6.63e-02	4.53e-02	1.59e-02	1.43e-02	1.13e-02
the contract of	m_0	1.70e-01	3.51e-02	1.96e-02	2.20e-02	1.93e-02
e de la companya de l	m_1	1.69e-01	2.81e-02	8.78e-03	1.32e-02	8.48e-03
moj establica	m_2	1.68e-01	2.71e-02	8.19e-03	1.28e-02	7.99e-03
or war	m_3	1.68e-01	2.64e-02	7.48e-03	1.22e-02	7.30e-03
10000	b_0	1.67e-01	1.73e-02	1.15e-02	7.16e-03	6.67e-03
The second	b_1	1.67e-01	1.72e-02	1.28e-02	9.84e-03	9.25e-03
Section Section	b_2	1.67e-01	1.81e-02	1.30e-02	1.14e-02	1.08e-02
1000	b_3	1.67e-01	1.76e-02	1.38e-02	1.14e-02	1.06e-02

TABLE II: Fractional errors on each of the parameters (all the other ones having been marginalized over) estimated at $L_{\rm max}=3000$ for the full DES (D) and CMB-X lensing (CL) surveys.

- dashed: no overlap
- dot-dashed: no overlap but Planck prior
- dotted: full (4k) overlap
- solid: full overlap plus Planck prior

[Vallinotto, arXiv:1304.3474, submitted to PRL]

Bottom line...

- Cross-correlation with <u>CMB lensing</u> allow to <u>break</u> the degeneracy between multiplicative bias, galaxy bias and σ_8 , even without overlapping the footprints!
- Existing data already allow to constrain galaxy density bias to ~10% for DES-SV galaxies in 4 redshift bins (caveats: photo-z errors and i24).
- Using CMB lensing in conjunction with galaxy density and shear allows <u>self-calibration</u> of these measurements.
- This is true for future surveys too (LSST, Euclid)!!

A few things I left out...

- How lensing universally contributes to any correlation function.
- How white dwarfs can put stringent bounds on inelastic dark matter.
- Cross-correlations to extract RSD (in progress).
- Using simulations to make educated guesses on what cross-correlation packs more S/N (in progress).
- Cross-correlations to constrain photo-z errors (in progress).
- 21-cm and its cross-correlations (in progress).

Conclusions

- A deeper understanding of the universe arises from conceiving it as a network of interrelated phenomena.
- Cross-correlation allow to:
 - extract further <u>cosmological</u> and (when supported by simulations) <u>astrophysical</u> information,
 - constrain experiments' systematics.
- They require a broad and very interesting array of tools: analytical, numerical and observational.