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BAO in pictures

Eisenstein et al. 0604361  

Figure 10 The generation of the acoustic peak illustrated via the linear-theory response to an
initially point-like overdensity at the origin; this figure is reproduced from Eisenstein et al. (2007b).
Each panel shows the radial perturbed mass profile in each of the four species: dark matter (black),
baryons (blue), photons (red), and neutrinos (green). The redshift and time after the Big Bang are
given in each panel. All perturbations are fractional for that species. We have multiplied the radial
density profile of the perturbation by the square of the radius in order to yield the mass profile. In
detail, we begin with a compact but smooth profile at the origin, which is why the mass profiles go
to zero there. As we are using linear theory, the normalization of the amplitude of the perturbation
(and thus the absolute scale of the y-axis) is arbitrary. a) Near the initial time, the photons and
baryons are tightly coupled in a spherical traveling wave. b) The outward-going wave of baryons
and relativistic species increases the perturbation of the cold dark matter, similar to raising a wake.
c) At recombination, the photons decouple from the baryons. d) With recombination complete,
the CDM perturbation is near the origin, while the baryonic perturbation is in a shell of 150 Mpc.
e) With pressure forces now small, baryons and dark matter are attracted to these overdensities
by gravitational instability. f) Because most of the growth is drawn from the homogeneous bulk,
the baryon fraction converges toward the cosmic mean at late times. Galaxy formation is favored
near the origin and at a radius of 150 Mpc. These figures were made by suitable transforms of
the transfer functions created by CMBfast (Seljak and Zaldarriaga, 1996; Zaldarriaga and Seljak,
2000).
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BAO in the sky
Planck 2015

16 L. Anderson et al.

Figure 10. Top panel: The measured monopole of the CMASS galaxy correlation function, multiplied by the square of the scale, s, for each of the BOSS
data releases. These figures are shown pre-reconstruction. For clarity, the DR10 data have been shifted horizontally by +1h

�1
Mpc and the DR9 data by

�1h
�1

Mpc. Bottom panel: The measured spherically averaged CMASS galaxy power spectrum, multiplied by the frequency scale, k, for each of the BOSS
data releases. For clarity, the DR9 data have been shifted by +0.002hMpc

�1 and the DR10 data by �0.002hMpc
�1. All of the error-bars shown in both

panels represent the diagonal elements of the covariance matrix determined from the mocks. One can observe broadly consistent clustering, especially in the
overall shape of each curve.

DR11, it represents, at worst, a 1 per cent underestimate of the bias
of the CMASS galaxies. Consistent trends are found in the LOWZ
sample (Tojeiro et al. 2014).

Fig. 11 displays the best-fit BAO model (solid curves) com-
pared to the data for ⇠(s) (left panels) and P (k) (right panels)
for DR11 only. The pre-reconstruction measurements are displayed
in the top panels, and the post-reconstruction ones in the bottom
panels. The measurements are presented for our fiducial binning
width and centring, and show a clear BAO feature in both P (k)
and ⇠(s), with the best-fit models providing a good fit. The ef-
fect of reconstruction is clear for both the correlation function
and power spectrum, with the BAO signature becoming more pro-
nounced relative to the smooth shape of the measurements. In-
deed, all of the BAO measurements, listed in Table 7, have im-
proved post-reconstruction, in contrast to our DR9 results (Ander-

son et al. 2012). This behaviour is expected given the results of
Section 4.2, which showed that, given the precision afforded by the
DR11 volume coverage, reconstruction improved the results from
all of our mock catalogues. Reconstruction is particularly striking
in the power spectrum plot, showing a clear third peak in the post-
reconstruction P (k).

6.2 DR11 Acoustic Scale Measurements

Our BAO measurements are listed in Table 7. The mocks for DR10
and DR11 show significant improvement with reconstruction in
most realisations, and we therefore adopt the reconstruction results
as our default measurements. Our consensus value for the CMASS
BAO measurement, ↵ = 1.0144 ± 0.0089, is determined from a
combination of P (k) and ⇠(s) measurements, and in what follows

c� 2014 RAS, MNRAS 000, 2–39

Anderson et al. 1312.4877

DV (z = 0.57) = 2056 ± 20 Mpc
rdrag = 147.33 ± 0.49 Mpc
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Outline

Eulerian PT and IR-resummation 

Resummation of IR mode-coupling for the 2-PF 

IR-resummation for the 3-PF 

A useful numerical approximation 
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Standard Perturbation Theory (SPT)

ˆ· ” + Ǫ̀ · [(1 + ”)v̨] = 0,
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Figure 1: SPT vertex.

where k = k1 + . . .kn�2. For us it will turn out to be important that also for F2 and
F3 a similar scaling holds when the sum of the arguments remains finite while one of the
momenta goes to infinity, i.e.

lim
q!1

F2(�q, q + k) / lim
q!1

F2(�q + k1, q + k2) / k2

q2
,

lim
q!1

F3(�q, q + k1,k2) / k2

q2
,

(2.20)

where we assumed that the momenta k1 ⇠ k2 ⇠ k are of the same order.

2.2 The bispectrum in SPT

Let us for the moment focus only on the SPT part of the equations of motion and postpone
a detailed discussion of the e↵ective stress tensor to Secs. 3 and 4. The two- and three-
point connected correlators of the stochastic field � are the quantities that we will consider
in this paper. In Fourier space, the power- and bispectrum are defined as

h�(k1, a)�(k2, a)i ⌘ (2⇡)3�(3)
D

(k1 + k2) P (k1, a) . (2.21)

and

⌦
�(k1, a) �(k2, a) �(k3, a)

↵
⌘ (2⇡)3�(3)

D
(k1 + k2 + k3) B(k1,k2,k3, a) (2.22)

Because of the �D-function, the bispectrum is not a function of three independent vectors.
We will usually drop the time argument of B and P and write B as a function of the three
moduli of the momenta B(k1, k2, k3). The linear power spectrum Plin is then nothing but
the two-point correlator of two �(1) and it can be represented diagrammatically by a simple
dot with two external lines as shown on the left in Fig. 2. The arrows show the direction
of the momenta. Since we are considering only the case of Gaussian initial conditions,
the correlator of three �(1) is zero. The first non-trivial contribution stems from the first
non-linear contribution to �(1), i.e. �(2), which gives us the tree-level bispectrum

– 10 –

”n
linear(q̨)”n(k̨)

Fn
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Effective Field Theory
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SPT 2-Point Function (2-PF)
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Figure 2: Tree-level and one-loop power spectrum.

B112(k1, k2, k3, a) = 2F2(k1,k2)Plin(k1, a)Plin(k2, a) + 2 cycl. perm. (2.23)

From a diagrammatic point of view, we can easily convince ourselves that there is no
possibility to connect the three external points without invoking the three-point vertex of
F2. On the top left of Fig. 3 the tree-level bispectrum is shown.

One can then start computing higher-order corrections to the power- and bispectrum.
As shown in Fig. 2 there are two possible one-loop corrections to the power spectrum and
they take the rather simple form

P22(k) = 2

Z

q

Plin(q)Plin(|k � q|) F 2
2 (q,k � q) ,

P13(k) = 6Plin(k)

Z

q

Plin(q) F3(k, q, �q) ,

(2.24)

giving the SPT power spectrum

PSPT(k) = Plin(k) + P22(k) + P13(k) + higher order loops . (2.25)

These integrals can be divergent when the loop momentum q becomes large and the renor-
malization of these divergences has been discussed in the Ref. [6]. It is in fact one of the
main shortcomings of SPT that depending on the initial conditions, i.e. the form of the
linear power spectrum, the perturbative expansion leads to divergent, non-physical results.

At the one-loop level, the bispectrum receives contributions from correlating either
three �(2), one �(3) with one �(2) and one �(1) or one �(4) with two �(1) (see Refs. [1, 22, 23]
for discussions of the one-loop bispectrum in SPT as well as Ref. [24]). This is what is
shown in Fig. 3. Translating the graphs of Fig. 3 into mathematical expressions, the four
one-loop contributions are

B222 = 8

Z

q

F2(�q, q + k1)F2(q + k1, �q + k2)F2(k2 � q, q)

Plin(q)Plin(|q + k1|)Plin(|q � k2|) , (2.26)

BI

321 = 6Plin(k3)

Z

q

F3(�q, q � k2, �k3)F2(q,k2 � q) Plin(q)Plin(|q � k2|)

– 11 –

P (k)|tree≠level =

Where is the BAO in Fourier space?  
The BAO signal is ~5% oscillation with freq. 1/150 Mpc   
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P (k)|1≠loop =



G. Trevisan  -  NYU Berkeley - 2018

SPT 2-Point Function
SPT completely fails around the BAO scale

tree-level
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SPT 2-Point Function
SPT completely fails around the BAO scale

1-loop
tree-level
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SPT 2-Point Function
SPT completely fails around the BAO scale

2-loop
1-loop
tree-level
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What is going on?
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Why SPT fails?

P1≠loop(k) ≥ 1
2

⁄

pπ�

d3p

(2fi)3
(p · k)2

p4 [Plin(|k ≠ p|) + Plin(|k + p|) ≠ 2Plin(|k|)] Plin(p).

Let’s focus on the 1-loop correction for a mode k

For a smooth component ≥ Plin(k)p2

k2 ,

Very long modes (        ) contribute little to the loopp π k

Plin Ã kn
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Why SPT fails?
The smooth component receives small  

contributions from loop integrals

and

P1≠loop(k) ≥ Plin(k)
⁄

pπk

d3p

(2fi)3 Plin(p)

= Plin(k)‘”<

‘”< π 1

which is good for PT
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Why SPT fails?

P1≠loop(k) ≥ 1
2

⁄

pπ�

d3p

(2fi)3
(p · k)2

p4 [Plin(|k ≠ p|) + Plin(|k + p|) ≠ 2Plin(|k|)] Plin(p).

Let’s go back to the 1-loop expression

For the BAO ≥ P w
lin

(k) (cos (p¸BAO) ≠ 1)

There is an infrared contribution from ¸≠1

BAO
. p . k

Plin Ã sin(k/kosc)
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Why SPT fails?
The wiggly component (BAO) receives large infrared  

(IR-enhanced) contribution from loop integrals

‘s< ¥ 1and

Bad for doing PT! Better not to expand

P w
1≠loop(k) ≥ k2P w

lin(k)
⁄

¸≠1

BAO
.p.k

d3p

(2fi)3
Plin(p)

p2

= P w
lin(k)‘s< .
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A brief excursus on Lagrangian PT (LPT)
Instead of using comoving coordinates, use fluid coordinates

to obtain the 2-PF

P (k) =
⁄

d3q12 e≠ik̨·q̨12
e
e≠ik̨·(s̨(q1)≠s̨(q2))

f

x̨(q̨, t) = q̨ + s̨(q̨, t)

and sum over all initial positions

1 + ”(x̨, t) =
⁄

d3q ”3
D(x̨ ≠ q̨ ≠ s̨(q̨, t))
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A brief excursus on Lagrangian PT (LPT)
The linear order solution for the displacement field is

and leads to the Zel’dovich approximation:

s̨(p) ƒ s̨1(p) = i
p̨

p2 ”lin(p),

ÈsisjÍ ≥
⁄ d3p

(2fi)3
Plin(p)

p2

P (k) =
⁄

d3q12 e≠ik̨·q̨12e≠ 1
2 kikjÈsisjÍ(q12)

where
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To fix just resum…
IR-resummation (à la EPT) Senatore, Zaldarriaga ‘15                                                         

numerically more demanding 

Consistency relations (using EP) Baldauf et. al ’15                                           
split Plin into smooth and wiggly components                                           

NLO corrections? 

Lagrangian PT (à la Zeldovich) many people                        
short modes should not be resummed                                                                     

calculations are more cumbersome, especially EFT                                                                                      
Time-Sliced PT (à la QFT) Blas et al. ‘15                                                                       

need to split Plin into smooth and wiggly components                             
manually check the IR-enhanced contribution                                         

resummation relies on separation of scales                                                                          
calculations are more cumbersome, especially NLO and UV                                                                    



IR- Resummation and NLO Corrections 
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IR-resummation

P (k) =
⁄

d3q12 e≠ik̨·q̨12
e
e≠ik̨·(s̨(q1)≠s̨(q2))

f

LPT calculations involve the average of an exponential 

which can be done as

e
e≠ik·�(q)

f
= exp

C Œÿ

n=1

(≠i)n

n! È(k · �(q))nÍc

D

= K(k, q),

Once expanded to some order in Plin

Lagrangian PT = Standard PT
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IR-resummation
The idea is to resum IR modes (~     ) ‘s<

      : contains only  
IR-displacements  

: IR-resummed,  
up to order N 

: not IR-resummed,  
up to order N 

K||N

K|N

K0

K|N = K0 · K

K0

----

----
N

=
Nÿ

j=0
R||N≠jKj

to get*

*after an approximation which is parametrically justified

›(r)|N =
Nÿ

j=1

⁄
d3q ›E

j (q)R̃||N≠j(r ≠ q, r)
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IR-resummation with NLO terms

What is the NLO IR-enhanced  term?

sn ≥ s1”
n≠1
1

ÈssÍ |1≠loop ≥ Èss””Í

ÈsssÍ |tree ≥ Èsss”Í

K0(k, q) © exp
5
≠1

2kikjA
IR
ij (q) + i

6kikjkkBIR
ijk(q)

6
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IR-resummation with NLO terms
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IR-resummation with NLO terms
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Detection of the BAO in the 3-PF
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FIG. 6: Values of Q3 as Fig.1, this time comparing three
of the biased models (lines) to observations in LRG galaxies
(symbols with errorbars). The total signal-to-noise in this de-
tection is 6.25. Models have Ωm = 0.26 and h = 0.7. with
Ωb = 0.03 (short-dashed lines) or Ωb = 0.06 (continuous line).
Long-dashed uses EH fit with the no-wiggles (ie no BAO peak,
but otherwise equal baseline spectrum) while the other lines
includes the BAO peak in the models. We have marginal-
ized over biasing parameters and spectral index and show the
best fit in each case. The high Ωb = 0.06 model has a mini-
mum χ2 = 6 (with 3 degrees of freedom) which is significantly
smaller than the mini-mun χ2 = 17 for the Ωb = 0.03 model.
The BAO peak shows at α = 100 in both the model with
Ωb = 0.06 and the data. The best fit model without BAO
peak has χ2 > 11, ie a probability smaller than 1% of being
correct.

We fix h = 0.7 and marginalized over spectral index ns =
0.8− 1.2 and biasing parameters b1 = 1.7− 2.2 and c2 =
0.0− 5.0. In the right panel we show the same fit for the
EH models with no-wiggles (ie no BAO peak). Note how
the values of ΩB − Ωm become degenerate, as expected
from our previous argument that the BAO peak helps
to break the ΩB − Ωm degeneracy. The best fit value
without BAO peak is χ2 = 11 as opposed to χ2 = 6
with the BAO peak. Thus, in relative terms the models
with and without a BAO peak are between 2 and 3-sigma
away. But note that in absolute terms, models without
the BAO peak are ruled out with > 99% confidence.

The WMAP5 best fit value (marked by a cross) is
outside the (2D) 1-sigma join region, but inside the
(2D) 2-sigma contours. The best fit value is for ΩB =
0.079 ± 0.025 and we find that ΩB > 0.035 at 2-sigma
level for any value of Ωm.

If we fix the ΩB − Ωm to its best fit value, we find
b1 = 1.7−2.2 and c2 = 0.75−3.55. The value of the linear
bias b1 is in excellent agreement with what we found in
Paper I by fitting redshift space distortions in the 2-point
function, but the error here is larger. The value of the
non-linear bias c2 ≃ 2 is higher than the one we found in

FIG. 7: Separate measurements of ξ3 (top panel) and hierar-
chical ξ3 ≡ ξ2(r12)ξ2(r23) + ξ2(r21)ξ2(r13) + +ξ2(r13)ξ2(r32)
(bottom panel). The models are as in Fig.6, ie Ωb = 0.03
(short-dashed line) and Ωb = 0.06 with (continuous line) and
without wiggles (short-dashed lines), all with Ωm = 0.26. In
this case the prediction depends not only on the biasing pa-
rameters, but also on the σ8 normalization. As can be seen
in this figure, the model with large ΩB show a different shape
and a BAO feature both in ξ3 and ξ2. Data follows the BAO
predictions in both quantities, as well as in Q3 which is quite
reassuring.

previous section for halos ch
2 ≃ 0.2. This is not surprising

as it is well known that more than one LRG can occupy
a single halo, in which case c2 tends to be larger for a
given b1 [49]. Also note that a larger value of c2 makes
the Q3 signal-to-noise larger in the LRG data than in the
MICE7680 group mocks. This helps defeating the shot-
noise and improves the significance of the BAO detection.

V. CONCLUSIONS

We have studied the large scale 3-point correlation
function for luminous red galaxies from SDSS, and partic-
ularly the reduced Q3 = ξ3/ξ2

2 , which measures the scal-
ing expected from non-linear couplings. We find a well-
detected peak at 105Mpc/h separation that is in agree-
ment with the predicted position of BAO peak. This
detection is significant since it is also imprinted in ξ2 and
ξ3 separately. We focus our interpretation in Q3 because
it is a measure independent of time, σ8 or growth fac-
tor. It only depends on the shape of the initial 2-point
function and the non-linear coupling of the gravitational
interaction. Our result for Q3 is in excellent agreement
with predictions from Gaussian initial conditions. When

Gaztanaga et. al  0807.2448
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Figure 3. The upper panels show the best-fit BAO and no-wiggle models for the data vs. the distance scale parameter ↵. For each, we
have indicated the best-fit ↵ with a black star. In both models the best-fit BAO template is preferred at roughly 4.5� to the best-fit
no-wiggle template. The lower panel shows the BAO templates for each bias model, with best-fit ↵ again denoted by stars. The horizontal
lines in this lower panel denote 1� and 2� thresholds for each model, solid for tidal tensor and dashed for minimal. The tidal tensor
model provides a slightly better fit to the data, and both �2 curves have similar widths with respect to ↵, suggesting our distance scale
precision should be robust to bias model choice. Further discussion of these plots is in §7.
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5.3 Power spectra

As shown in SE16b, the full 3PCF model is simply a set
of integral transforms of the power spectrum. In the present
work, we use two different template power spectra. First, we
use the physical power spectrum Pphys to compute the mod-
els. Second, we use the no-wiggle power spectrum, which has
the large-scale CDM growth correct but with all BAO fea-
tures removed. We use these two power spectrum templates
because comparing the �

2 from fitting the data to each bias
model with no-wiggle and physical power spectra gives a
measure of the BAO significance in the data.

The physical power spectrum is the linear power spec-
trum with the BAO component smoothed by a Gaussian to
model RSD and non-linear structure formation (Eisenstein,
Seo & White 2007; Anderson et al. 2012):

Pphys(k) = [P (k)� Pnw(k)] exp
⇥
�k

2⌃2

nl/2
⇤
+ Pnw(k), (6)

with P the linear theory power spectrum. Pnw is the no-
wiggle power spectrum and is computed from the fitting for-
mula for the no-wiggle transfer function given in Eisenstein
& Hu (1998). ⌃nl = 8 Mpc/h is the non-linear smoothing
scale.

The power spectrum is always formed from the matter
transfer function Tm as P = Ak

nsT
2

m, where A is an ampli-
tude set by fixing �8 today. We compute the transfer func-
tions from Code for Anisotropies in the Cosmic Microwave
Background (CAMB; Lewis 2000) using a geometrically
flat ⇤CDM cosmology with parameters matching those used
for the MultiDark-Patchy mock catalogs (Kitaura et al.
2015) and consistent with the Planck values (Planck Paper
XIII, 2015). Our cosmology also matches that used for S15.

The parameters are ⌦b = 0.048, ⌦m = 0.307115, h ⌘

H0/(100 km/s/Mpc) = 0.6777, ns = 0.9611, �8(z = 0) =
0.8288, TCMB = 2.7255 K. We take the survey redshift to be
zsurvey = 0.57, the average of the range 0.43 < z < 0.7; this
is a good approximation because the redshift distribution
of objects is roughly symmetric about the middle of this
interval (Reid et al. 2015). We rescale �8 by the ratio of
the linear growth factor at the survey redshift to the linear
growth factor at redshift zero.

5.4 Varying ↵

A final aspect of our model is to vary the effective size of
the Universe at our survey redshift. Within both the physical
and no-wiggle templates, we allow the physical distances to
be rescaled by a factor ↵, where ↵ = 1 if our assumed fiducial
cosmology is correct. Given a 3PCF at multipole ` for the
fiducial cosmology ⇣

F

` (r1, r2), our model 3PCF with varying
↵ will be ⇣

M
` (r1, r2) = ⇣

F

` (↵r1,↵r2).
The sense of our rescaling is that ↵ < 1 moves the BAO

features to larger physical scales in the model, while ↵ > 1
moves the BAO features to smaller physical scales in the
model. For instance, a best fit value of ↵ < 1 will associate
the observed BAO with a model where they appear on larger
scales than the fiducial cosmology. For both the physical and
no-wiggle templates, we use ↵ in the range 0.8 < ↵ < 1.25.

Varying ↵ allows us to measure the cosmic distance
scale at the survey redshift relative to the sound horizon for
the fiducial cosmology recorded above. Our dilation or con-
traction rescales the 3PCF amplitude by roughly (1 � 4↵),

since ⇣ ⇠ 1/(r21r
2

2) + cyc. and r1, r2 ! ↵r1,↵r2. Since we
do not renormalize to a fixed �8 after dilation or contrac-
tion, changing ↵ induces a shift in b1, causing a substantial
correlation of b1 with ↵.

6 FITTING PROCEDURE

6.1 Triangle configurations used

We briefly outline the triangle configurations used and then
turn to our high-significance BAO detection. As discussed in
§1 we wish to avoid triangles where any two galaxies are too
close to each other such that non-linear structure formation
has become important and linear perturbation theory likely
provides a poor model. To acheive this we use all bins in
r1, r2 where the minimum of any side is > 20 Mpc/h and the
maximum of any side is < 140 Mpc/h. The 20 Mpc/h min-
imum is dictated by avoiding squeezed triangles; the max-
imum reflects a decision we have made that there is very
limited signal to noise in larger scale bins.

Furthermore, there may be as-yet unresolved large-scale
systematics in the survey that become dominant on these
scales. In particular, we computed the half-inverse covari-
ance matrix test for a number of different maximal scales
and found that the analytic covariance matrix did not re-
produce that derived from the mocks as well on larger scales.
The choice of 140 Mpc/h as a maximal scale was thus dic-
tated by the likelihood of diminishing returns from larger
scales and the concern that the covariance matrix on larger
scales was not as well-controlled.

Explicitly, our criteria hold for the twenty bin combi-
nations in the set S =

�
[2, 5], [2, 6], [2, 7], [2, 8], [2, 9],

[2, 10], [2, 11], [2, 12], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3,
11], [4, 7], [4, 8], [4, 9], [4, 10], [5, 8], [5, 9]

 
. Bin 0 in r1

would mean 0 6 r1 < 10 Mpc/h, bin 1 in r1 would mean
10 6 r1 < 20 Mpc/h, etc., and analogously for r2.

6.2 Bias parameters, �, and integral constraint
amplitude

We briefly describe our procedure for fitting the free param-
eters of the models presented in §5 to the data, as there are
some dimensions of the problem that can be significantly ac-
celerated due to the structure of the models. In particular,
at fixed ↵, �, and c, for the bias parameters (b1, b2, and
bt), our model is a sum with terms proportional to b

3

1, b
2

1b2,

and b
2

1bt. These three combinations are independent, and
thus the minimum �

2 for the total model is the sum of the
minimum �

2 for each of these three terms.
Consequently rather than doing an expensive 3-D

search in the space (b1, b2, bt) for our tidal tensor model
or in the 2-D space (b1, b2) for our minimal model, we can
solve directly for the best b1, b2, and bt as a least-squares
minimization Gaussian likelihood problem. For each ↵, �,

and c, this procedure gives the best-fit biases. The proce-
dure also returns the covariance matrix of these parameters
Cbiases as a function of ↵, �, and c.

Unfortunately, ↵, �, and c do not enter our model lin-
early (see SE16b equation (21)). Therefore we require ex-
plicit loops over them. We explored fitting for � but found
essentially no constraint; it is highly degenerate with b1, as

c� 0000 RAS, MNRAS 000, 000–000
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SPT predictions for the 3-PF
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Figure 4: The one-loop diagramgs B222 (solid red), BI

321 (dashed red), |BII

321| (solid blue),
|B411| (dashed blue) and the sum of all four (dashed black) is shown for three special
configurations of k1, k2 and k3 on a logarithmic scale. The solid black curve is the tree-
level contribution. In the squeezed limit, we set �k = 0.013 hMpc�1. We plot the absolute
value of the diagrams |BII

321| and |B411| since they are negative. Our figures agree well with
the ones in Ref. [25] and, as can be seen, there are no large cancellations among the
diagrams.

We compute the one-loop integrals using two independent codes: once using the built-
in routines of Mathematica and a C++ code which uses the CUBA libraries [26]. The two
calculations agree very well with each other and we can easily reproduce the results found
in the literature, e.g. in Ref. [25]. To avoid numerically unstable situations, the one-loop
contribution to the bispectrum is most conveniently computed using the IR-safe integrand
discussed in Appx. B (see also Ref. [7, 27]). In Fig. 4 we show the one-loop diagrams in
three special configurations. As opposed to the one- and two-loop power spectrum, in the
bispectrum there are not very large cancellation among the single diagrams. Nevertheless,
the IR-safe integrand improved somewhat the precision of the numerical computation.
Fig. 5 shows the two shapes of the tree-level and one-loop diagrams. In order to emphasize
the shape dependence of the bispectrum, it is convenient to consider a quantity similar to
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+ 5 perm. , (2.27)

BII

321 = 6F2(k2,k3) Plin(k2)Plin(k3)

Z

q

F3(k3, q, �q) Plin(q) + 5 perm. ,

= F2(k2,k3) Plin(k2)P13(k3) + 5 perm. , (2.28)

B411 = 12Plin(k2)Plin(k3)

Z

q

F4(q, �q, �k2, �k3) Plin(q) + 2 cyc. perm. (2.29)

Note that BII

321 reduces to the one-loop contribution to the power spectrum stemming from
the correlator h�(3)�(1)i, i.e. P13. Again, these integrals can be divergent just as in the case
of the one-loop power spectrum. An important part of this paper is dedicated to prove
that these divergences can be cancelled. In sum, the SPT bispectrum at the one-loop level
reads

BSPT(k1, k2, k3) = B112 + B222 + BI

321 + BII

321 + B411 . (2.30)

If properly regularized, the integrals in Eqs. (2.26), (2.27), (2.28) and (2.29) can be eval-
uated analytically for a power-law linear power spectrum Plin(k) / kn in EdS as done
in Ref. [22]. For a more realistic ⇤CDM universe, these integrals have to be evaluated
numerically since we do not have an analytic form of the linear power spectrum at the
present epoch. Also, in this case we do not encounter formally divergent integrals since
modes entering the horizon during radiation domination are suppressed.
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(a) Equilateral triangles of side l. (b) Triangles having (l1, l2) = (¸BAO, ¸BAO/2).

Figure 1: Predictions for the tree-level and 1-loop 3-PF in Eulerian PT for the equilateral and
“1:2” configurations. Similarly to what happens for the 2-PF, the 1-loop correction completely fails
to recover the correct shape of the BAO features.

For what follows we will also need the real-space 3-PF ’. At tree-level this can be written
down directly as a function of the 2-PF › and its derivatives as

’(x̨1, x̨2, x̨3) = 10
7 ›(x12)›(x13) + Ò≠1

i ›(x12)Òi›(x13) + Òi›(x12)Ò≠1

i ›(x13)

+ 4
7ÒiÒ≠1

j ›(x12)ÒiÒ≠1

j ›(x13) + 2 cyc. perm.,
(7)

where

Ò≠1

i ›(x) = ≠i

2fi2

⁄
dk ki j0(kx)Plin(k). (8)

At higher order the 3-PF is non-factorizable and therefore one has to resort to a numerical
evaluation of the Fourier transform (see App. A for a fast numerical evaluation of the 3-
dimensional FT).

3 The IR-resummed 3-PF

To derive the IR-resummed 3-PF it is better to start from the correlation function of the
density field in Lagrangian space. In this picture, instead of solving the EOMs in Eq. (1)
for the density and velocity fields, one performs the following field-dependent change of
coordinates

x̨(q̨) = q̨ + s̨(q̨), (9)

which map a fluid element labelled by its (Lagrangian) initial position q̨ to its (Eulerian)
final position x̨, and solves perturbatively for the displacement field s̨. The overdensity ” in

4
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IR-resummation for the 3-PF

È(1 + ”(x̨1))(1 + ”(x̨2))(1 + ”(x̨3)Í =
⁄

≠d6k d6q eik·(x≠q) K(k, q),

K(k, q) =
e
e≠ik·�(q)

f
�(q) = (s̨(q̨1) ≠ s̨(q̨3), s̨(q̨2) ≠ s̨(q̨3))

where

Start from

to obtain the IR-resummed 3-PF

’IR+(x̨1, x̨2, x̨3)|N =
⁄

d6r
Nÿ

j=2
’j(r)

5
K≠1

0 (≠iÒy, x)
---
---
N≠j

G(x, y)
6

y=x≠r
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IR-resummation for the 3-PF

’IR+
tree (x̨1, x̨2, x̨3) =

⁄
d6r ’E

tree(r)G(x, x ≠ r)

Similar to the resummation of the 2PF  
For example at tree-level

Gaussian-like kernel induced by  
long displacement modes 

Scoccimarro, Trevisan: in preparation
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IR-resummation for the 3-PF

’IR+
tree (x̨1, x̨2, x̨3) =

⁄
d6r ’E

tree(r)G(x, x ≠ r)

Gaussian-like kernel induced by  
long displacement modes 
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(a) Equilateral triangles of side l. (b) Triangles having (l1, l2) = (¸BAO, ¸BAO/2).

Figure 2: IR-resummed 3-PF as in Eq. (37) in real space for equilateral triangles of side l (left)
and triangles having (l1, l2) = (¸BAO, ¸BAO/2) as function of the angle between them (right).

3.1 A numerically useful approximation

So far our derivation was based on perturbation theory where one has parametric control
of the error. However, the actual implementation of Eq. (37) is numerically challenging
due to the high-dimensional Gaussian convolution. Therefore here we want to propose an
approximation and check it against the results in Fig. 2. The simplification comes about by
realizing that resumming infrared modes is only useful around the BAO scale (that is, for
the oscillatory component P w of the power spectrum), since there is no IR-enhancement of
the loop integrand involving only the smooth part of the power spectrum P nw.

Therefore let us split4 the linear power spectrum as

Plin(k) = P nw

lin
(k) + P w

lin
(k), (23)

and perform the IR-resummation of Eq. (19) only on the oscillatory part. This can be
achieved by keeping exponentiated only the correlation functions of long displacement modes
that share the same argument of the wiggly component and expand the exponential when
the wiggly component is not involved. The error that one makes in doing this approximation
(at any fixed order in perturbation theory) is of the same order as the loop corrections on
the smooth part, which haven’t been calculated anyway. Finally given that the oscillatory
component is very sharp in real space one can approximate (as done in [1]) q̨ ƒ ¸BAOk̂ in
the correlation function at the exponent. The error in this approximation is parametrically
equivalent to the error in deriving Eq. (37) and therefore will be corrected going to higher
order in loops.

This procedure at tree-level leads to the replacement5

›(x̨) æ ›≥IR+(x̨), (24)
4See App. C for details on the splitting technique used.
5A similar conclusion was reached also in [7] using TSPT.
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(b) Triangles having (l1, l2) = (¸BAO, ¸BAO/2).

Figure 1: Predictions for the tree-level and 1-loop 3-PF in Eulerian PT for the equilateral and
“1:2” configurations. Similarly to what happens for the 2-PF, the 1-loop correction completely fails
to recover the correct shape of the BAO features.

For what follows we will also need the real-space 3-PF ’. At tree-level this can be written
down directly as a function of the 2-PF › and its derivatives as

’(x̨1, x̨2, x̨3) = 10
7 ›(x12)›(x13) + Ò≠1

i ›(x12)Òi›(x13) + Òi›(x12)Ò≠1

i ›(x13)

+ 4
7ÒiÒ≠1

j ›(x12)ÒiÒ≠1

j ›(x13) + 2 cyc. perm.,
(7)

where

Ò≠1

i ›(x) = ≠i

2fi2

⁄
dk ki j0(kx)Plin(k). (8)

At higher order the 3-PF is non-factorizable and therefore one has to resort to a numerical
evaluation of the Fourier transform (see App. A for a fast numerical evaluation of the 3-
dimensional FT).

3 The IR-resummed 3-PF

To derive the IR-resummed 3-PF it is better to start from the correlation function of the
density field in Lagrangian space. In this picture, instead of solving the EOMs in Eq. (1)
for the density and velocity fields, one performs the following field-dependent change of
coordinates

x̨(q̨) = q̨ + s̨(q̨), (9)

which map a fluid element labelled by its (Lagrangian) initial position q̨ to its (Eulerian)
final position x̨, and solves perturbatively for the displacement field s̨. The overdensity ” in
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(b) Triangles having (l1, l2) = (¸BAO, ¸BAO/2).

Figure 2: IR-resummed 3-PF as in Eq. (37) in real space for equilateral triangles of side l (left)
and triangles having (l1, l2) = (¸BAO, ¸BAO/2) as function of the angle between them (right).

3.1 A numerically useful approximation

So far our derivation was based on perturbation theory where one has parametric control
of the error. However, the actual implementation of Eq. (37) is numerically challenging
due to the high-dimensional Gaussian convolution. Therefore here we want to propose an
approximation and check it against the results in Fig. 2. The simplification comes about by
realizing that resumming infrared modes is only useful around the BAO scale (that is, for
the oscillatory component P w of the power spectrum), since there is no IR-enhancement of
the loop integrand involving only the smooth part of the power spectrum P nw.

Therefore let us split4 the linear power spectrum as

Plin(k) = P nw

lin
(k) + P w

lin
(k), (23)

and perform the IR-resummation of Eq. (19) only on the oscillatory part. This can be
achieved by keeping exponentiated only the correlation functions of long displacement modes
that share the same argument of the wiggly component and expand the exponential when
the wiggly component is not involved. The error that one makes in doing this approximation
(at any fixed order in perturbation theory) is of the same order as the loop corrections on
the smooth part, which haven’t been calculated anyway. Finally given that the oscillatory
component is very sharp in real space one can approximate (as done in [1]) q̨ ƒ ¸BAOk̂ in
the correlation function at the exponent. The error in this approximation is parametrically
equivalent to the error in deriving Eq. (37) and therefore will be corrected going to higher
order in loops.

This procedure at tree-level leads to the replacement5

›(x̨) æ ›≥IR+(x̨), (24)
4See App. C for details on the splitting technique used.
5A similar conclusion was reached also in [7] using TSPT.
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Figure 6: Comparison of the 2-PF calculated with IR resummation of [3] and with the trick in
Eqs. (25) and (29) (equivalent to the findings of [1] after imposing a fixed cuto� �IR) at 0- and
1-loop. Already at 1-loop the two procedures di�er for less that 1%.
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(b) Triangles having (l1, l2) = (¸BAO, ¸BAO/2).

Figure 3: Comparison between the IR-resummation in Eq. (37) (full 6-d integral) and the trick
of Eq. (27) in real space for equilateral triangles of side l (left) and triangles having (l1, l2) =
(¸BAO, ¸BAO/2) as function of the angle ◊ between them (right). The numerical approximation
performs extremely well already at tree-level. At 1-loop it is found to agree at the %-level.

(a) 3-PF for equilateral triangles of side l. (b) 3-PF for ?? triangles of ??.

Figure 4: Comparison between Eq. (25) and N-body simulations in Fourier space for equilateral
(left) and ?? (right) configurations.
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Conclusions

Although IR-enhanced, IR mode-coupling    
leads to corrections <1% in the 2-PF                                  

IR-resummation fixes also the 3-PF 

Tree-level and 1-loop 3PF agree quite well 

Num. approx. very close already at 1-loop 

3-PF contains additional information:                                                      
how well can we constraint??              

reconstruction?? 
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