Reverse-Engineering the Galaxy Formation Problem

Jeremy Tinker KICP, University of Chicago

50 Mpc/h

Collaborators

- Galaxy Voids Charles Conroy, Peder Norberg, Santiago Patiri, David Weinberg, Mike Warren. astro-ph/0707.3445
- MgII absorption systems-Hsiao-Wen Chen

astro-ph/0709.1470

The Universe to a computer.

Simulation by Mike Warren

Galaxy Bias Scale and Luminosity Dependent

Galaxy Formation Insights from simulations

Halo Occupation Distribution

- Statistical prescription for the connection between galaxies and dark matter halos.
- Know <u>all</u> about halos.
- Cons: No galaxy formation physics.
- Pros: No galaxy formation physics. Allows one to 'reverse-engineer' the galaxy formation problem.

P(N|M) - Guts of the HOD

The HOD at work

Zehavi, Weinberg, Zheng et al (2004): SDSS results

Is the HOD really only P(N|M)? What about P(N|M,δ)?

 More formally: Are the properties of the galaxies in a halo of mass M determined only by halo mass? What about other halo properties?

In what ways are voids useful?

GOOD: Making puns in your astro-ph titles:

- •"Hierarchy of Voids: Much Ado About Nothing"
- •"Evidence of Absence: Galaxy Voids in the Excursion Set"
- •"A case devoid of bias: ORS voids and IRAS voids" (my italics)

Also, provide a unique testbed for galaxy formation theories/ processes, since environment is extreme.

BAD: Void statistics (VPF) don't help constrain bias or cosmology.

20 fits to $M_r <-19$ SDSS sample.

the 20 HODs for those fits.

the 20 VPFs for those HODs.

What if density mattered?

Cyan = density*in*depdendent HOD.

Gold = galaxy formation efficiency goes down at low- δ .

In other words, mass goes up at fixed luminosity (at low- δ).

mock SDSS M_r<-19 galaxy samples

Put the HOD to the test!

We've secretly replaced Tinker's regular HOD with our new δ -dependent model. Let's see if he notices...

SDSS DR4 results

- Points: DR4 measuremnts.
- Blue Curves: HOD predictions.
 - Green curves: δ-HODs

• Luminosity depends only on M, not on halo environment.

> Tinker, Conroy, Norberg, Patiri, Weinberg, Warren, 2007, astro-ph/0707.3445

Density-Morphology Relation

• Red, old, elliptical galaxies found in dense environments.

Halo Environment = Galaxy color?

Red = $M > 10^{13} M_{sol}$ (group and cluster-size halos)

Green= $5x10^{11}$ M_{sol}-- (mass for -19 central gals)

Should this halo be more likely to house a red galaxy than this halo? ie, $P(red)=f(\delta)$?

HOD assumption: *P(red)=constant*. Both halos equally likely.

Red galaxies: Implications for halo assembly bias

old halos

how "old fraction" depends on local environment at **fixed halo mass**

young halos

Red galaxies: Implications for galaxy assembly bias

- Models where red $f_{red,cen}$ decreases at $\delta < \delta_c$.
- In Croton et al (2005) semianalytical model, $f_{\rm red,cen} \sim 1/10$ at $\delta_{\rm c} \sim -0.2$. (red line)
- *f*_{red,cen} must be nearly constant across all environments (at fixed halo mass).
- SA mechanism (or its trigger) for halting star formation is wrong.

Blue Galaxies: Implications for assembly bias

Density-Morphology Redux

Denisty-morphology from Park et al (SDSS DR4)

HOD prediction for the density-red fraction relation. Change in mass function with δ creates correlation with density.

1

 $\rho/\overline{\rho}_{-20}$

HOD assumption is, at low- δ , there is no more densitymorphology b/c only M<10¹² halos exist there. Causes break.

Tinker & Conroy, in prep.

Conditional Mass Function

- The mass function changes with local density.
- Top-heavy at high densities.
- Low-mass preferentially in low densities.
- Correlations with environment come from changing mass function

What makes a galaxy? HALO MASS

- Luminosity
- (over four magnitudes in r-band)
- Color
- (even for extremes of the color distribution)
- Morphology
- (mergers don't cause morph. transformation of field galaxies[?])
- Star formation rate? AGN activity?
- (need halo+environment decomposition)

Visualizations of Sloan Data

courtesy of Mark Subbarao

What do (we think) they mean?

Small halo = lower column density, lower dispersion, weaker absorber (equivalent width [A])

Big halo = lots of gas, large dispersion, stronger absorber.

Why are they important?

- This gas dominates the total baryon budget of the universe.
- Direct window into high-*z* galaxy formation.
- Are they ubiquitous, or a special subset of dark matter halos?
- What is the distribution of halo masses for the gas?
- Is a non-gravitational process required for the anti-correlation?

Halo-Based Model: P(W_r|M)

Halo-Based Model: P(W_r|M)

FREE PARAMETERS:

- A_W(M) absorption/g-cm².
 cold gas fraction
 cold cloud properties
 natural scaling W_r~M^{1/3}
- κ_g(M) incidence of absorption.
 -covering factor sightlines may not hit any cold gas
 -incidence of gaseous halos what if MgII is a subset of halos?
- Model 1: Vary smoothly with halo mass.

Results

-Model: Gas content varies smoothly as a function of halo mass. "Classical picture".

- Seven free parameters.

Cold vs. Hot Halo Gas

Low Mass = Cold Gas (T~10⁴ K)

High Mass = Hot Gas (T>10⁶ K) no Mgll

Transition mass scale: shock heating occurs as an inside-out process.

Simulations predict that this process occurs over 1-2 dex in halo mass.

In the hot mode, some cold gas still exists.

Dekel & Birnboim 2006

Wherefore the anti-correlation?

- Starbursts yield strong absorbers in low-mass halos.
- Not necessary: $10^{11} \text{ M}_{sol}/\text{h} \sim 2 \text{ Ang.}$
- BUT, anti-correlation comes from weak systems in high-mass halos.
- One-halo term in LRG-W_r
 x-corr proves massive galaxies host weak absorbers.

Impact Parameters

- Points+bars are mean and dispersion for every ten data points.
- Line+shade are mean and dispersion of model (note: these are model predictions).
- Dotted line = 99% upper bound on $P(W|\rho_b)$.
- NB! take these data with grain of salt: incomplete at low ρ_b and possibly biased. Use for consistency check.

Absorber Summary

•Can model with absorber statistics with halo-based model, and constrain the parameters.

•High κ_g means absorbers are representative of all galaxies, M>10¹¹.

•Bias anti-correlation can only be fit with a hot/cold transition.

•Starbursts/superwinds <u>do not</u> create an anti-correlation.

•Combine galaxy HOD with absorber occupation to make predictions for absorber-galaxy connection.