Signature of primordial vector modes on large-scale structure

Atsushi Taruya

(RESCEU & IPMU, Univ. Tokyo)

Development of new analytic method

An improved treatment of perturbation theory (PT) to deal with non-linear gravitational evolution

AT & Hiramatsu (2008) AT, Nishimichi, Saito & Hiramatsu (2009)

Redshift-space power spectrum

Based on improved treatment of perturbation theory (PT) for gravitational clustering,

AT, Nishimichi & Saito ('10)

$$P^{(S)}(k,\mu) = e^{-(k\mu f \sigma_{v})^{2}} \left[P_{\delta\delta}(k) - 2f \,\mu^{2} P_{\delta v}(k) + f^{2} \mu^{4} P_{vv}(k) + A(k,\mu) + B(k,\mu) \right]$$

$$A(k,\mu) = -2k\mu \int \frac{d^3\mathbf{p}}{(2\pi)^3} \frac{p_z}{p^2} B_{\sigma}(\mathbf{p}, \mathbf{k} - \mathbf{p}, -\mathbf{k})$$

antiphase oscillation

Mode- $\left\langle \theta(\mathbf{k}_1) \left\{ \delta(\mathbf{k}_2) - \mu_2^2 \theta(\mathbf{k}_2) \right\} \left\{ \delta(\mathbf{k}_3) - \mu_3^2 \theta(\mathbf{k}_3) \right\} \right\rangle = (2\pi)^3 \delta_D(\mathbf{k}_{123}) B_{\sigma}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$ coupling btw. velocity & density (low-k approx.)

$$B(k,\mu) = (k\mu)^2 \int \frac{d^3\mathbf{p}}{(2\pi)^3} F(\mathbf{p}) F(\mathbf{k} - \mathbf{p})$$

small in amplitude (<1-2%)

$$F(\mathbf{p}) \equiv \frac{p_z}{p^2} \left\{ P_{\delta v}(p) - \frac{p_z^2}{p^2} P_{vv}(p) \right\}$$

These also depend on 'f'

Role of corrections

Including corrections

$$P^{(S)}(k,\mu) = \sum_{\ell = \text{even}} P_{\ell}^{(S)}(k) \, \mathcal{P}_{\ell}(\mu)$$

Role of corrections

Neglecting corrections

$$P^{(\mathrm{S})}(k,\mu) = \sum_{\ell = \mathrm{even}} P_{\ell}^{(\mathrm{S})}(k) \, \mathcal{P}_{\ell}(\mu)$$

Even within the 1% convergence limit, the agreement is not so good (few % in monopole, >5% in quadrupole)

Today's Topic

Cosmic Antique

Cosmic Twister

Endangered species

Vector modes

Vector modes in cosmology

Classifying the spatial inhomogeneities as

scalar · vector · tensor

 $S(\vec{x},t), V_i(\vec{x},t), T_{ij}(\vec{x},t)$

Intuitively,

vector modes are analogous to shear and/or vorticity in fluid mechanics (divergence-free)

Roles in cosmology

- Scalar: cosmic expansion · gravitational clustering
- <u>Vector</u> · <u>tensor</u> : remnants, sub-dominant components

minor, but helpful to probe early-universe physics

Vector modes in cosmology

$$\delta g_{i0} = a^2 \sigma_i$$

$$\frac{1}{\mathcal{H}}(\nabla \times \boldsymbol{v})_i = \omega_i$$

Evolution equations

$$\dot{\sigma}_i + 2\mathcal{H}\,\sigma_i = 8\pi\,G\,a^2P\Pi_i^{(V)} \qquad + \qquad \text{(New sources)}$$

$$\dot{q}_i + (1 - 3c_s^2)\mathcal{H} q_i = \frac{P}{P + \rho} \Pi_i^{(V)} \quad ; \quad q_i = \mathcal{H} \omega_i$$

Anisotropic stress

(matter)

Causal seeds / Cosmic string

2nd-order perterbation

Modification of gravity in vector sector (gravity)

Cosmological vector fields

(Einstein-Aether / Extended Horava-Lifshitz)

In addition, anisotropic inflation may also produce vector modes

CMB constraints on vector modes

Cosmic strings as a source producing vector modes

For Nambu string,

$$G\mu < 1.6 \times 10^{-7} \ (95\% {\rm CL})$$
 (WMAP+ACT)

Future feasibility

- B-mode polarizations
 Seljak & Slosar ('06)
- Lensing effect on CMB
 Yamauchi et al. in prep.

Dunkley et al. ('10)

Large-scale structure probes

Galaxy spectroscopic surveys

Redshift distortion

Galaxy imaging surveys

Cosmic shear

Vector modes can be separately detected

Redshift distortion

Redshift of galaxies via spectroscopic measurement is inherently affected by the Doppler shift due to peculiar velocity of galaxies

Redshift space
$$\hat{\mathbf{S}} = \hat{\mathbf{r}} + \frac{(\hat{\mathbf{v}} \cdot \hat{\mathbf{z}})}{a \, H(z)} \, \hat{\mathbf{z}} \; ; \; \begin{cases} \mathbf{V} & \text{: Peculiar velocity of galaxies} \\ \hat{\mathbf{z}} & \text{: Observer's line-of-sight direction} \end{cases}$$

Galaxy clustering pattern is apparently distorted

Anisotropic power spectrum:

$$P(k) \longrightarrow P^{(S)}(k, \mu) ; \quad \mu \equiv (\vec{\mathbf{k}} \cdot \hat{\mathbf{z}})/|\vec{\mathbf{k}}|$$

Kaiser Formula

Linear regime (galaxy bias, ignored)

matter P(k) in real space

standard formula

$$P^{(\mathrm{S})}(k,\mu) = (1+f\,\mu^2)^2\,P_\delta(k)$$
 Kaiser ('87)

growth-rate parameter

$$f(z) \equiv rac{d \ln D_+}{d \ln a} \left[D_+(z) : \text{ Linear growth factor}
ight]$$

Vector modes induces new term

modified formula

$$P^{(S)}(k,\mu) = (1 + f \mu^2)^2 P_{\delta}(k) + \frac{1}{2}\mu^2 (1 - \mu^2) P_{\omega}(k)$$

Power spectrum of vorticity

Multipole expansion

Combining P0,P2 & P4, we can separately detect vorticity.

$$P^{(\mathrm{S})}(k,\mu) = \sum_{\ell=0}^{P_{\ell}^{(\mathrm{S})}(k)} P_{\ell}(\mu) \begin{cases} P_{0}^{(\mathrm{S})}(k) = (1 + \frac{2}{3}f + \frac{1}{5}f^{2}) P_{\delta}(k) + \frac{1}{15}P_{\omega}(k) \\ P_{2}^{(\mathrm{S})}(k) = (\frac{4}{3}f + \frac{4}{7}f^{2}) P_{\delta}(k) + \frac{1}{21}P_{\omega}(k) \\ P_{4}^{(\mathrm{S})}(k) = \frac{8}{35}f^{2} P_{\delta}(k) - \frac{4}{35}P_{\omega}(k) \end{cases}$$
 Legendre polynomials

Simple Fisher analysis indicates that vorticity component with vector/scalar ratio of 5~10% in amplitude would be detected.

Cosmic Shear

Distortion of distant-galaxy images due to weak gravitational lensing by large-scale structure

Complex ellipticity

$$\chi = \left(\frac{a^2 - b^2}{a^2 + b^2}\right) e^{i 2\phi} \longrightarrow 2\gamma$$
 shear field

Gravitational Lensing induces spatial correlation in the shear field.

E-/B-mode decomposition

In analogy to CMB polarization, spatial pattern of shear field is decomposed to E-/B-modes

Notice!

Scalar-type perturbations only generate E-mode pattern.

Vector-type perturbations can produce not only E-mode, but also <u>B-mode cosmic shear</u> (clue to detect vector modes)

Vector cosmic shear: formula

Shear field from vector modes

Flat universe

$$\gamma = -\int_0^{r_s} dr \, \frac{r_s - r}{2r \, r_s} \, r^2 \, e_+^i e_+^j \left[e_r^k \partial_i \partial_j \sigma_k - \frac{d}{dr} \partial_j \sigma_i \right]$$

r: comoving radial distance

$$e_r, e_+ \equiv e_\theta + i e_\varphi$$
:

 r_s : comoving radial distance for distant galaxies

projection vector

B-mode angular power spectrum

metric fluc. (vector mode)

$$C_{\ell}^{\text{BB}} = \frac{2}{\pi} \int_{0}^{\infty} dk \, k^{2} \int_{0}^{r_{s}} dr \int_{0}^{r_{s}} dr' \times \left(\frac{3r_{s} - 4r}{2r \, r_{s}}\right) \left(\frac{3r_{s} - 4r'}{2r' \, r_{s}}\right) j_{\ell}(k \, r) j_{\ell}(k \, r') P_{\sigma}(k; r, r')$$

Summary

Detecting vector modes from large-scale structure

- Redshift distortion
 via spectroscopic survey
- B-mode cosmic shear via imaging surveys
- Derive basic formulas for power spectra: $P^{(S)}(k,\mu),~C^{BB}_{\ell}$

Feasibility of future observations

Redshift distortion: would detect vorticity component if vector/scalar ratio of 5~10% @ k<0.1h/Mpc

Lensing B-mode : would detect cosmic strings of $G\mu \lesssim 10^{-7}$

(Thomas et al. '09)

Synergy with dark energy survey may be fruitful