Minor mergers and the mass growth of massive galaxies

Tomer Tal Yale University

Pieter van Dokkum, David Wake BOSS collaboration

BCG Seminar 10/11/2011

Massive galaxies in the nearby universe

- Old stellar populations and low star formation rates
- The most massive galaxies are along the red sequence
- Spectra dominated by old stars

Massive galaxies at high-z

- The most massive galaxies are also the oldest out to z~2 (10 Gyr ago)
- Colors possibly imply low star formation since shortly after creation

Whitaker et al 2010

Massive galaxies at z=2

 Continuous (and slow) mass growth from z=2 to z=0

van Dokkum et al. 2010

How do massive galaxies grow in mass?

• Star formation rates are low at 0<z<1

(e.g., Faber 73, Balogh+04, Worthey+92, Peletier 98, Jørgensen+99, Trager+00, , Kauffmann+03, Hogg+04, Thomas+05)

• (Major mergers)

(e.g., van Dokkum+99, Patton+02, Tran +05, van Dokkum 05, Bell+06, Boylan-Kolchin+06, Naab+06, Bundy+06, Masjedi+06, Wake+06, McIntosh+08, Wake+08, Masjedi+08, Bundy+09)

• At least some growth due to minor mergers

(e.g., Kormendy+89, Schweizer+92, van Dokkum 05, Naab+07,09, Bournaud+07, Stewart+08, Bezanson+09, Tal+09)

• Difficult to quantify frequency and mass ratio

Minor mergers

 Consistent with simple analytic calculations

Minor mergers

- Consistent with simple analytic calculations
- Frequent in numerical simulations

Observing minor mergers

- Direct observations of post merger systems
 - Estimate of frequency
 - Progenitor mass ratio unknown
- Environment
 - Which galaxies are available to merge with
 - Difficult to determine membership

TIDAL FEATURES AROUND MASSIVE ELLIPTICAL GALAXIES

Direct observation of post merger systems

Tidal distortion in ellipticals

- Schweizer and Seitzer (1992)
- Hard to do features typically faint
- Completeness

The OBEY survey

- Luminosity limited sample
- Customized observing pattern
- Only ~4x SDSS depth
- Excellent flatfielding

Tal et al. 2009

Flat fielding

Without sky flats

Tal et al. 2009

Flat fielding

With sky flats

Tal et al. 2009

Tidal parameter derivation

Tal et al. 2009

How common are tidal features?

- 70% of all nearby ellipticals show signs of a (recent) minor interaction
- All are red with no significant star formation

Tal et al. 2009

Mass accretion rate

• Estimate (over-simplified):

$$\frac{dM}{M} = 0.2 \left(\frac{m_2 / m_1}{0.1}\right) \left(\frac{f_T}{0.7}\right) \left(\frac{1}{N_0}\right) \frac{dT}{Gyr}$$

- f_{T} frequency of tidal features
- m2/m1 progenitor mass ratio
- N₀ number of dynamical friction timescales it takes to dissolve a typical feature

Mass accretion rate

- Estimate (over-simplified): $\frac{dM}{M} = 0.2 \left(\frac{m_2 / m_1}{0.1} \left(\frac{f_T}{0.7} \right) \left(\frac{1}{N_0} \right) \frac{dT}{Gyr} \right)$
- f_{τ} frequency of tidal features
- m2/m1 progenitor mass ratio
- N₀ number of dynamical friction timescales it takes to dissolve a typical feature

EVIDENCE FOR MINOR MERGERS IN THE STELLAR HALOS OF LRGS

Massive galaxies at extremely large radii

Mergers and stars

 Major mergers – stars from progenitors are well mixed in the resulting system

Mergers and stars

 Major mergers – stars from progenitors are well mixed in the resulting system

 Minor mergers – tidal stripping distributes accreted stars preferentially in outskirts

$$\bigcirc \div \bullet \quad \Longrightarrow \quad \bigcirc$$

Stellar accretion via tidal stripping

• Energy balance:

$$V_{circ}^{M} = V_{esc}^{m}$$

• "Typical" radius of accreted stars:

$$R_a = \frac{M}{m} \frac{r_m}{2}$$

Color profile of individual ellipticals

- Steep color gradient at small radii
- Only a few galaxies with a measurement at r > 15 kpc
- Kormandy+09

Alternative - stacking

- Averaging a large number of galaxy images
- Well defined sample LRGs \rightarrow Properties of individual galaxies similatr to average properties SDSS
- · Large sample \rightarrow
 - Meaningful statistics

Luminous Red Galaxies (SDSS)

- The reddest, most massive galaxies in SDSS (10^{11} - 10^{12} M $_{\odot}$)
- 90% are group centrals
- Selected in a narrow redshift bin

Luminous Red Galaxies (SDSS)

- The reddest, most massive galaxies in SDSS (10^{11} - 10^{12} M $_{\odot}$)
- 90% are group centrals
- Selected in a narrow redshift bin

Stacking

- 42,000 images
- 2.3 Msec integration time, equivalent to 40 hours on 10m class telescope
- Background removed using random stacks

Light Profiles

- PSF
- Reach r-band surface brightness of 31.5 mag arcsec⁻²
- Well fitted with single Sersic parameter set out to 100 kpc
- Sizes typically underestimated by 10% and flux by 20%

Color profile

- Profile in inner ~30 kpc matches nearby galaxies
- Flattens out at ~50 kpc out to 100 kpc
- Consistent with minor mergers

Stellar accretion via tidal stripping

• "Typical" radius of accreted stars:

$$R_{a} = \frac{M}{m} \frac{r_{m}}{2}$$

$$\mathbf{I}$$

$$R_{a} \approx 60 \left(\frac{M/m}{10}\right) \left(\frac{r}{6 \, kpc}\right) kpc$$

Stellar accretion via tidal stripping

• "Typical" radius of accreted stars:

$$R_{a} = \frac{M}{m} \frac{r_{m}}{2}$$

$$I$$

$$R_{a} \approx 60 \left(\frac{M/m}{10} \left(\frac{r}{6 \, kpc}\right) kpc\right)$$

THE ENVIRONMENTS OF LUMINOUS RED GALAXIES

Observations of satellite galaxies around SDSS LRGs

Environment

- Important for understanding mergers which galaxies do massive galaxies merge with?
- Estimates of a typical mass ratio
- Difficult to identify satellite galaxies of individual environments
- Alternative observe the average luminosity function of satellite galaxies around massive galaxies

Statistical study of the environment

- · Well defined sample \rightarrow LRGs
 - Properties of individual environments close to average properties
- Large sample \rightarrow SDSS+BOSS
 - Meaningful statistics
- Contamination \rightarrow Important

Statistical study of the environment

- · Well defined sample \rightarrow LRGs
 - Properties of individual environments close to average properties
- Large sample

 \rightarrow SDSS+BOSS

- Meaningful statistics
- · Contamination \rightarrow Important

SDSS and BOSS LRGs

- Two redshift bins: z~0.34 and z~0.65
- Number-density matched

Photometry

- Detect all objects in 500 kpc apertures around each LRG
- Low detection threshold
- Repeat in randomly selected positions within the same SDSS imaging fields

 Measure luminosity distribution in LRG fields

- Measure luminosity distribution in LRG fields
- Also in random fields

- Measure luminosity distribution in LRG fields
- Also in random fields
- Subtract one from the other

- Measure luminosity distribution in LRG fields
- Also in random fields
- Subtract one from the other
- Poor fit by just a
 Schechter function –
 use two-parameter fits

Deep stripe 82 images

Using deep
 Stripe 82 data
 we constrained
 Schechter slope,
 detection
 threshold

Gap properties

• Width measurement:

$$\int_{L_2}^{\infty} \Phi(L) d \log L = 1$$

$$\Delta M = 2.5 \log(L_2 / L_{cen}) \approx 1.3 mag$$

at both redshifts

 LRG peak consistent with passive luminosity evolution

The mass growth of LRGs through mergers

- The gap width implies a typical mass ratio of 1:4 between the central galaxy and its most massive satellite
- Mergers of higher mass ratio within the environment unlikely

Summary

- Three independent observations that are consistent with minor mergers being the main mode of mass growth in massive galaxies
- Tidal features (and minor mergers) are common essentially around every nearby elliptical
- Color profile consistent with accretion of lower mass, bluer galaxies
- Luminosity gap between the central galaxy and its most luminous satellite - growth through major mergers is unlikely