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Dark matter galaxies CDM-dominated hierarchical structure 
formation scenario	


 massive clusters	


From Millennium Simulation Project	


Appearance of clusters is the 
natural consequence of nonlinear 
clustering in a CDM model 
 
Most massive clusters (10^15 Ms):  
a few per 1Gpc^3	




Galaxy Clusters 
•  Most massive gravitationally bound objects 

–  10^14 ~ 10^15 M_sun (100 – 1000 galaxies) 
–  Strongest S/N of the lensing signals 
–  DM plays a dominant role to the formation ⇔ for a galaxy, 

baryonic effect is important 
–  Suitable for testing the CDM scenarios on small scales <1Mpc 

•  Astronomically very interesting objects to study 
–  Seen with various wavelengths  (radio, optical, X-ray) 
–  Connection between DM (gravity), hot gas (baryonic matter) 

and galaxies (a tiny part of baryons); 100:10:1 

optical X-ray Radio 



Cosmological Use of Clusters: 
Halo Mass Function	


Tiny density fluctuations at z~1000: δm~10^-3	
 Gaussian seed density 
fluctuations 

+ 
Spherical collapse model 
(or N-body simulation)	


Mass function:  
 
 
 

@cluster mass scales	


The mass function can 
be a powerful probe of 
cosmology (e.g. DE) 	
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Halo formation at z~0: δm>>1	


Gravitational instability 
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Halo mass function (contd.)	
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Angular number counts 
of clusters	


Haiman et al 01	


Volume effect	

Growth effect	
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DE equation of state: w	

M>10^14.2 h-1Msun	


Note that the right plot uses σ8 
normalization: the same number 
density of clusters at present for 
all models	




Issue: cluster mass	


White 02 	
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Gaussian seed density 
fluctuations 

+ 
Spherical collapse model 
(or N-body simulation)	


Mass function: n(>M) 
 
 
 

@cluster mass scales	

The mass function can 
be a powerful probe of 
cosmology (e.g. DE) 	
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Cosmological Use of Clusters: 
Halo Mass Function 
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Cluster mass (contd.)	

•  In a real world, there is no unique definition of cluster 

mass; no clear boundary with the surrounding structures 
–  Need to estimate the mass such that the definition is closer to the 

way used in simulations; e.g. spherical overdensity mass 

•  Have to infer cluster masses (including DM) from the 
observables (optical, X-ray, lensing) 

•  Cluster counting experiment requires the well-calibrated 
mass-observable relation for  cosmology  
–  For future surveys (e.g. SPT-like survey with 4000 deg^2), the 

mass proxy relation needs to be known to a few % accuracy 
σlnM~0.01  

–  The intrinsic distribution around the mean relation needs to be 
also understood	




Vikhlinin et al. 2009:  
Chandra Cluster Cosmology 

Project	


M_500 estimated from Chandra data  
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State-of-the-art mass proxy	


 red: Chandra 
 blue: WL (Hoekstra07; CFHT) 	


Vikhlinin et al. 07	
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σlnM~10%	
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The dark matter mass 
is estimated assuming 
hydrostatic equilibrium 
in X-ray observables	




Internal structure of halo 
•  Simulation-based predictions:  the appearance of a 

characteristic, universal density profile (Navarro, Frenk & 
White 96, 97; NFW profile) 

From Jing & Suto 99 
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NFW profile  
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In addition, halo shape is by nature triaxial (Jing & Suto 01)	




Model-dependent mass 
estimate: NFW profile	


•  An NFW profile is specified by 2 parameters 
•  Useful to express the NFW profile in terms of the cluster 

mass and the halo concentration parameter 

•  Can infer the halo mass from the measured halo profile  	
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“Shape” of dark matter halo	


•  Mass accretion onto a cluster 
region is preferentially along the 
surrounding filamentary 
structures 

•  Therefore, the mass accretion is 
not spherical 

•  Shape of dark matter halos is 
triaxial by nature, even in a 
statistical sense 

•  A triaxial halo model gives a 
better fit to simulated halos (Jing 
& Suto 01)	
 From H. Yahagi (Kyoto U.)	




Gravitational Lensing  
= method to “see” invisibles	




• Strong Lensing 
–  Multiple Images 
–  Large Arcs, Ring 
–  Obvious Distortion 

• Weak Lensing 
–  Slight Stretching 
–  Distortion small 
compared to initial shape 
–  Statistical lensing 
–  Open up an opportunity to 
measure the mass 
distribution over the entire 
region  

Strong and weak lensing 
 

 to center 	




A simulated lensing field	


•  Tangential shear 
around κ peaks  

•  Filamentary structures 
washed out by 
projection 

•  The shear amplitudes 
–   γ~0.1-0.01 around 

clusters 
–   cosmic shear: γ~0.01 	
3x3 degree field (Hamana 02) 

 color: κ 
 sticks: γ	


30Mpc @ z~0.2 
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Weak lensing: such a small signal!	


Shear: g~0.1-0.01	
 Faint, small gals. (1’’, <25mag)	


Distortion on star image: O(0.01)	


Intrinsic: e~0.2	


To have an accurate WL measurement, we need 
 - Excellent image quality 
 - Deep image (to reduce the intrinsic ell. noise) 

 
Here we used the KSB method (Kasier, Squires & Broadhurst 
95); we are also working on other methods (in progress)	


Credit: Bridle et al 10	




Subaru Telescope:  
Best facility for WL measurement 

 

­ Only Subaru has the prime focus 
camera, Suprime-Cam, among other 
8-10m class telescope: the wide 
field-of-view (0.25 sq deg) 

­ Excellent image quality allows 
accurate shape measurements of 
galaxies (typically ~0.7arcsec) 

­ Deep images allow the use of many 
galaxies for the WL: higher spatial 
resolution 



Subaru capability for WL measurement 

•  Subaru (S-Cam) is currently the best instrument for measuring 
WL signal, thanks to the excellent image quality 

Subaru S-Cam 

CFHT (blue: mass) 

   MTOkabe, MT+ 10  Bardeau, Soucail, Kneib et al.07 

A209 



Subaru FoV = Virial region of a cluster @z~0.2	


•  Virial radius of a 
massive cluster 
~Mpc 

•  Subaru FoV 
covers the virial 
region of a 
cluster at z~0.2	
27’(3.5Mpc/h) 

34’(4.4Mpc/h) 

Example: A1689 (z=0.18)	


ACS/HST 

more than 100 multiple galaxies 
(Broadhurst et al. 04)	




The best case: A1689 (z=0.18) 

HST/ACS 

Subaru 

Radial distance from the cluster center 	


Solid curve: the best-fit NFW	


Broadhurst, MT, + 05	
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LoCuSS 
 (The Local Cluster Substructure Survey)	


0.15	
 0.2	
 0.3	


•  International collaboration (PI: 
G.P.Smith; Europe, Japan, USA) 

•  Explore a systematic study of 
~100 X-ray luminous clusters in 
the redshift range 0.15-0.3 

•  The multi-wavelengths: Subaru, 
Palomar, VLT, UKIRT, HST, 
GALEX, Spitzer, Chandra, 
XMM, SZA, MMT/Hectospec 

 	

•  Subaru/Suprime-Cam data for ~30 clusters (24 have 2 filter data)  
-  Unbiased cluster sample (not based on strong lensing) 
-  The FoV of S-Cam matches the virial region of clusters at the target redshifts 

(~0.2) 
-  Now ~60 clusters (as of April 2011) 
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 cluster redshift: z	


□ Subaru	




Multi-wavelength study of 
galaxy clusters	


SZA	


HST	

MMT	


Subaru	


Spitzer	


UKIRT	


XMM-Newton	


Chandra	




LoCuSS: Subaru weak lens study 
~30 clusters (Okabe, MT, Umetsu,+ 10) 
	


•  Subaru is a superb facility for WL measurement 
•  A detailed study of cluster physics (e.g. the nature of dark matter) 



1D shear fitting: an example of A209	
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Okabe, MT, + 10	




Example 2: A2261	


Okabe, MT, 10	




Virial mass estimation	


★NFW favored 
△NFW/SIS both not acceptable	

☐Both acceptable	
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•  All clusters: S/N>5 
(typically S/N~10) 

•  The mass estimates 
depend on the model 
assumed for the 
fitting 

•  The virial mass 
determination:  
accuracy 20-30% 

•  MNFW/MSIS~1.19  	




Mass determination 
(contd.)	


NFW model fitting	
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"(M# ) /M#

! 

"(c# ) /c#

•  A best accuracy in M is 
10-20% when Δ=500-1000 is 
assumed 
–  Over the radii the lensing signals 

have a largest S/N 

•  The concentration parameter is 
most accurately measured for 
the virial definition	
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Stacked Lensing	
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 cluster 
(or LRG)	


Less affected by 
projection effect, 
intrinsic alignment, 
sys. errors  …. 
 
Note: halo center	


Also see Oguri & MT 11	




Results: stacked lensing	


! 

"# 2 = #SIS
2 $ #NFW

2 = 39 and 129 for low -  and high - mass samples, respectively

•  For Subaru data, only ~10 clusters are enough to obtain the high S/N signals	

Okabe, MT+10	




Full use of 2D shear map	


•  aa	


•  The cluster mass distribution is far 
from spherical symmetry, as 
predicted from the collisionless 
CDM model.  

•  Jing & Suto  showed that simulated 
halos can be better described by a 
triaxial halo model than the 
spherical one 

•  Projecting the triaxial halo model 
along the l.o.s. gives the 2D mass 
density:   

A2390	

Oguri, MT, + 10 	




•  2D shear fitting 

•  6 parameters 
–  Mass, concentration, halo ellipticity 

(2), the centroid position (2) 	
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l In this particular case, e_2D=1-b/a=0.59 
l Note that the iso-contours of shear amplitudes are not elliptical, needs to solve 
the 2D Poisson equation.   
	


2D shear fitting	


! 

C = Cshape nosie + CLSS
where	




Halo ellipticity is not largely degenerate with 
halo mass and concetration parameters 	




A detection of 
halo ellipticity 	


•  A significant detection of halo 
ellipticity for 18 clusters, at 7σ 
level compared to the spherical 
model 

•  The ellipticity ~0.5 on average 
–  X-ray images show e~0.2-0.3 
–  Galaxy scales: e~0.2 
–  Can exclude MOND? 

•  Remarkable agreement with 
the CDM predictions 

•  Not enough to discriminate the 
model differences	




Halo center	

•  Halo center, constrained from 

lensing, is close to the position 
of brightest central galaxy 

•  However, some clusters (about 
10% fraction) show large 
offsets 

•  Imply that the BCG is 
oscillating around the potential 
well for some clusters 

•  Quantify the impact of 
systematic errors in the stacked 
cluster lensing analysis 	




Test of gravity on cluster scales?	

E. Egami (Arizona) and his collaborators: MMT (6.5m, 300 fibers) 
~200-300 members/cluster for 30 clusters (~20 clusters as of May 2009)	
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Also see Schmidt 10	




Velocity field around clusters	


•  Building the theoretical model (Lam, Nishimichi, Schmidt, MT in prep.)	


From N-body simulations	
 From halo model (virial 
velocity + in-fall motion)	




Complementarity of different methods	




Hyper Suprime 
Camera Project  
­ Upgrade the prime focus camera 

­  Funded, started since 2006 

­  International collaboration: Japan 
(NAOJ, IPMU, Tokyo, Tohoku, 
Nagoya), Princeton, Taiwan  

­  IPMU members (H. Aihara, MT, N. 
Yoshida, …): leading this project 

­  Field-of-View: ~10×Suprime-Cam 
­ Keep the excellent image quality 

­  ~1500 sq. deg weak lensing survey 
starting from late 2012- (~5 years) 
Note: the current WL surveys ~100 sq. 
deg (but shallow) 



~100Mpc@z~0.5⇒~5deg 
γ~O(0.01) 

Hyper-SC 

SC 

Other 8m Tels 

ü  Find >10^4 clusters out to z~1.4, with masses 
>10^14Msun 

ü  Mapping the dark matter distribution on 
cosmological distance scales 

ü  Explore the nature of dark energy through 
the lensing observables  

Goals of HSC survey 	




From Hitoshi’s slide 	




Summary	


•  Gravitational lensing offers a unique means of measuring dark matter 
distribution in a cluster 

•  Subaru is the best facility for making accurate weak lensing measurements 
•  Measuring cluster masses is of critical importance for doing cosmology 

with cluster counting statistics 
–  Various systematic issues need to be carefully studied: projection effect, 

miscentering effect, model uncertainty, source redshifts, ….   
•  Radial density profile and shape of dark matter distribution can be used to 

test the CDM predictions on small scales that are not constrained by CMB 
•  The pilot study in preparation with Subaru HSC survey, aimed at exploring 

the nature and properties of DM and DE	



