Beyond the standard cosmological
model: neutrinos and non-Gaussianity

wos} dYWM

Tristan L. Smith (BCCP, UC Berkeley)

Extensions of the standard cosmological model

* There are some extensions which are ‘expected’ at some level:

* Non-zero gravitational-wave contribution
* Running of the spectral index
* Non-zero neutrino mass

* Time varying dark energy equation of state

* Others would seriously challenge the standard cosmological
model:

* Effective number of neutrino species

* Non-Gaussianity

* Parity violating interactions

* Anisotropic processes
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% Concentrate on two extensions of the standard
cosmological model:

% Constraints on the effective number
of neutrino species

% CMB constraints to the primordial
non-Gaussian amplitude
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Constraints on neutrino interactions
using cosmological observations
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Status of the standard model of
cosmology from the CMB
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Status of the standard model of

from the CMB
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Status of the standard model of
cosmology from the CMB

HO+WMAP+ACT+SPT+SDSS
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Status of the standard model of

Interpreting extra relativistic energy

cosmology from the CMB
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densit

%* So far we have a hint that there exists an anomalous
radiative background... but no other information

* What can this be? Most explanations (such as sterile
neutrinos) suppose that this background will be non-
interacting

* We were interested in exploring to what extent the
observations can show that this background is non-
interacting

* Following Hu (1998) we modify the evolution equations by
introducing two new parameters c2z and c2;
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Interpreting extra relativistic energy
densit

Interpreting extra relativistic energy
densit

* Changes to the effective sound-speed modifies the pressure
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* Changes to the viscosity parameter controls to what extent
the fluid is imperfect (i.e., anisotropic stress)
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What do these new parameters Interpreting extra relativistic energy

densit
* These parameters give some measure of the interactions # The effects on the CMB spectrum
this anomalous background may have !
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The data The Results

* We used various combinations of CMB and large-

scale structure data:

* Hy from HST
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Conlusions and future

The Results directions

* These constraints provide further
evidence that there may be extra

0
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: non-interacting neutrino-like degrees i et
1 WMAP+SDSS of freedom
] # Planck will be able to constrain:
:0.35 ?(;“ WMAP"’SDSS anckK wi € aple ro consftrain:
& + lya Neg =3.0£0.17
108 cZq = 0.333 £ 0.004
logs | CM B-only 5

2. = 0.333 £ 0.026

— All * Extend parameterization for neutrino mass

* Explore to what extent the data is able to constrain a time
evolving ceq(a) and cyis(a)
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Non-Gaussian estimation from the CMB
The PDFs of , ,
. . * The standard cosmological model predicts that the
non-Gq ussian |i')l primordial fluctuations obey Gaussian statistics
. * It is simple to think of a few basic ways to test this
L L L L L LR
In collaboration with Marc * One way is to look at the PDF | ,7;}&:??55 B E
Kamionkowski, Alan of the temperature fluctuations - [ fu=5000 /)
Heavens, and Benjamin in the CMB sost .
Wandelt *# It turns out that the signalto- £, : E
noise using the PDF is sub- gt
Phys. Rev. D 83, 023007 (2011) oofimal o [ 1
Phys. Rev. D 84, 063013 (2011) P ? / \
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Non-Gaussian estimation from the CMB

* Instead, we want to use the fact that any process which
is Gaussian is uniquely determined by its mean, 1, and
variance, o

(=)' =0
((x = p)?) =o?
(z—p)’)=0
((x = p)?t) = 30"

* An obvious test of Gaussianity then asks: is the third
moment zero? and is the fourth moment just given by
the Gaussian piece?
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Non-Gaussian estimation from the CMB

* The harmonic coefficients of the temperature field on the sky
are related to the primordial curvature potential

3
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so that correlations in harmonic space are also non-
Gaussian
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Non-Gaussian estimation from the CMB

* To make progress we use a parameterization for the level of
non-Gaussianity in the CMB maps

O(7) = ¢(@) + fur [6(7)* — (8(2)*)]

where ¢ is a Gaussian random field and @ is the primordial
curvature potential

* We can see that, for instance, the three-point function is now
non-zero:

(D(71)P(72)P(L3)) ~ fur(d(T1)9(T3))(P(T2)9(T3))
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Why do we want to do this?

* Any constraint to primordial non-Gaussianity probes the
physics of the very early universe

* In particular, assuming that inflation was driven by a single
field one can show [Creminelli and Zaldarriaga (2004)]

5
frl = E(l —ng) — fo1 = 0.02

* So that if we find f,,; > 0.02 then all single field inflationary
models will be ruled out

* Measurement of the amplitude of the trispectrum, 7,1,
would give us additional constraints on the early-
universe physics which produces non-Gaussianities
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Non-Gaussian estimation

* Constraints to non-Gaussianity

Phot LRG [ — | o— |
Phot LRG (0-4) | ° ! ! |

Spec LRG | } } : @ : : |

IsW T @

Qso | H—H

QSO (b=1/D) | H—’—
QsOalt 2 | H—+
QSO merger }—’—’—
Combined [ }—’—
Comb. merger - }—‘—
Comb.+W5 bi. | H
F

Merg.+WS5 bi. |

—400 —300 —200 —100 100 200 300 400

Slosar et al. (2008)

‘® BERKELEY CENTER for

Tristan Smith b, COSMOLOGICAL PHYSICS

* For the rest of this talk, we will work in a simplified limit: flat-
sky, Sachs-Wolfe limit
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Non-Gaussian estimation
* Constraints to non-Gaussianity

* WMAP constraint on bispectrum:

fo1 = 32421 (68%)

Komatsu et al. (2010)
* WMAP constraint on trispectrum:

a1 = (0.96 £ 0.68) x 10*

Smidt et al. (2010)
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Estimators for ful and 7y

* Expectation values of the harmonic coefficients are given by

(a(l)a(l2)a(ls)) = fuB(l,l2,13)87 7 7

— — —

(a(l)a(lz)a(ls)a(la)) = (1, b2, I3, 13)07, 1o o7,

* We can construct an estimator as a weighted sum, i.e.

Far=N"1 3" a(h)a(lz)a(ls) W (i, b, 1)
FRENA
* We optimize this estimator by requiring the signal-to-noise to
be maximized
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Estimators for ful and 7y

* Maximizing the S/N gives an inverse-variance weighted
sum:

f:l:1 3 a(ly)a(ly)a(ls)B(ly, Iy, I13)

N 4~ G, C,Cy,
li+1l2+413=0

a(ly)a(ly)a(l3)a(la)T (11, Iz, Is, 11)
C,C, 0L 0,

I +lo+l3+13=0

* What are the statistics of these estimators?2 Usually we
assume the central limit theorem applies...
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Statistics of the estimators
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Examples of non-Gaussian PDFs

* At its core, these estimators are a weighted sum of the
product of Gaussian random variables:

A= E WiJ,kaia]’ak
i!j7k

% The simplest case is W, j, =1

A= g a;a;ay

i,5,k
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les of non-Gaussian PDFs

* At its core, the bispectrum fi1 estimator is a weighted sum of
the product of three Gaussian random variables:

A= E Wz"chaiajak

i,j.k
* The simplest caseis W, ;=1 O
~ 99.7% CL. — A > 70
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Computationally intensive

sutationally intensive

% 1000 realizations takes at least 1000 CPU-hours!

* This is good enough to determine the variance of the
estimator, but not to determine the shape of the PDF

* For a non-Gaussian process, 1000 realizations gives the
following histogram:
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% 1000 realizations takes at least 500 CPU-hours!

* This is good enough to determine the variance of the
estimator, but not to determine the shape of the PDF

* For a non-Gaussian process, 1000 realizations gives the
following histogram; for 10° realizations we find this (11):
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Non-Gaussian estimation

* Flat sky/ Sachs Wolfe will reproduce the correct scalings
and give order of magnitude estimates:
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* First investigate the shape of the PDF for Pf(f;l; far = 0, lnax)
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Full shape of the PDF

* Doing the same for P, (71; fu1 = 0, Limax ), We find it is highly
non-Gaussian: 0.5
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Full shape of the PDF

* For f,; # 0 the non-Gaussianity in the map imparts additional
non-Gaussianity to the bispectrum PDF and trispectrum PDF

* For Lyax = 3000 , £ = 30, and 7, = 900

P(fu) P(7)

Gaussian

30
—
T
fnl Hl
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* For f,; # 0 the non-Gaussianity in the map imparts additional
non-Gaussianity to the bispectrum PDF and trispectrum PDF

*For lmax ~ 3000, fu = 30, and 71 = 900

P(fu) _P(7)

fnl 7/—1;

* In addition, the variance of these estimators depends on the
value of fu1 and Ty1...
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Evolution of the variance

* The fact that the variance depends on f;,; and 7] is easy to
see:

ﬁl:1 3 a(l)a(lz)a(ls)B(ly, I, I3)

N 4~ G, C, C,
l1+1l2+13=0

a(l) = a(l) + fmda® (1)

J/c;l = Fo + fuF1 + fAF + 3 Fs

Fu ) = SOEE) (fu)

(2] o
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Evolution of the variance

% Our calculations show that the variances of these estimators
scale with 1.5 as:

1 2

nl

_|_
T2A12  In(lmax)  210° (Lynax)

2 _
O-fnl -

5  L74x1072  0.0287y
I = 7 p2p4 A2

max max

+0.2372

* Now we have everything we need to evaluate the significance
of a hypothetical detection...
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*In 2006 Kogo and Komatsu claimed that for large enough 1,
the trispectrum estimator has a larger S/N than the bispectrum

estimator

2 1
o —
For 7 79412, In(lnax)
, 174 %1072
Ot = A2]4

* With the correct scaling, we can see that the bispectrum
estimator will always have a higher S/N
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What could have gone wrong?

* Our full calculations give
fa1 = 3077225 (95% C.L.)
1 < 250 (95% C.L.)

* If we did not take into account the non-Gaussian shape of the
PDF then we would have concluded

fur = 30122 (95% C.L.)
T < 1000 (95% C.L.)

* If, in addition, we did not take into account how the variance
depends on the amplitudes we would have concluded

far =30 +2.8 (95% C.L.)
a1 < 90 (95% C.L.)
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Conclusions

* Small-scale CMB observations show an anomalously large value for N

* Explored how observations probe the interaction/clustering properties of
this anomalous radiative energy density

* We found that with an expanded parameterization the data is still at odds
with the standard neutrino sector at > 95 % CL and consistent with a non-
interacting fluid

* The central limit theorem does not apply to non-Gaussian estimators— PDFs
of these estimators may, themselves, be non-Gaussian

* The effect on the bispectrum estimator is small; the effect on the trispectrum
estimator is large- must be included when stating the significance of a
measurement
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