Beyond the standard cosmological model: neutrinos and non-Gaussianity www. WMAP team Tristan L. Smith (BCCP, UC Berkeley)

Extensions of the standard cosmological model

- *There are some extensions which are 'expected' at some level:
 - * Non-zero gravitational-wave contribution
 - * Running of the spectral index
 - * Non-zero neutrino mass
 - * Time varying dark energy equation of state
- * Others would seriously challenge the standard cosmological model:
 - * Effective number of neutrino species
 - * Non-Gaussianity
 - * Parity violating interactions
 - * Anisotropic processes

Tristan Smith

Status of the standard model of cosmology from the CMB

Outline

- *Concentrate on two extensions of the standard cosmological model:
- *Constraints on the effective number of neutrino species
- *CMB constraints to the primordial non-Gaussian amplitude

Status of the standard model of cosmology from the CMB

Interpreting extra relativistic energy density

* Changes to the effective sound-speed modifies the pressure support k au

$$c_{\text{eff}}^2 = 1/3 - \frac{1}{3} - \frac{1$$

Tristan Smith

Interpreting extra relativistic energy density

- * So far we have a hint that there exists an anomalous radiative background... but no other information
- * What can this be? Most explanations (such as sterile neutrinos) suppose that this background will be non-interacting
- * We were interested in exploring to what extent the observations can show that this background is non-interacting
- * Following Hu (1998) we modify the evolution equations by introducing two new parameters $c_{\rm eff}^2$ and $c_{\rm vis}^2$

Tristan Smith

Interpreting extra relativistic energy density

Changes to the viscosity parameter controls to what extent the fluid is imperfect (i.e., anisotropic stress)

 $k\tau$

$$C_{\text{Vis}}^2 = 1/3$$
 — $\frac{1}{6}$ $\frac{10}{4}$ $\frac{10}{4}$ $\frac{1}{6}$ $\frac{1}{6}$

What do these new parameters physically mean?

- * These parameters give some measure of the interactions this anomalous background may have
- *An analogy with the tightly coupled photon-baryon fluid
- * Bell et al. (2006)
 considered a model
 where some neutrinos
 are tightly coupled to a
 scalar field

The data

Tristan Smith

* We used various combinations of CMB and largescale structure data:

- $igspace* H_0$ from HST
- * SDSS matter power spectrum
- * Lya forest
- * CMB
 - *WMAP7
 - * ACBAR
 - * ACT
 - * SPT

Conlusions and future directions

- *These constraints provide further evidence that there may be extra non-interacting neutrino-like degrees of freedom
- * Planck will be able to constrain:

$$N_{\rm eff} = 3.0 \pm 0.17$$

 $c_{\rm eff}^2 = 0.333 \pm 0.004$
 $c_{\rm vis}^2 = 0.333 \pm 0.026$

- * Extend parameterization for neutrino mass
- * Explore to what extent the data is able to constrain a time evolving $c_{\text{eff}}(a)$ and $c_{\text{vis}}(a)$

Tristan Smith

Non-Gaussian estimation from the CMB

- * The standard cosmological model predicts that the primordial fluctuations obey Gaussian statistics
- * It is simple to think of a few basic ways to test this prediction
- * One way is to look at the PDF of the temperature fluctuations in the CMB
- * It turns out that the signal-tonoise using the PDF is suboptimal

Tristan Smith

Komatsu (2002)

Non-Gaussian estimation from the CMB

* Instead, we want to use the fact that any process which is Gaussian is uniquely determined by its mean, μ , and variance, σ

$$\langle (x - \mu)^1 \rangle = 0$$
$$\langle (x - \mu)^2 \rangle = \sigma^2$$
$$\langle (x - \mu)^3 \rangle = 0$$
$$\langle (x - \mu)^4 \rangle = 3\sigma^4$$

*An obvious test of Gaussianity then asks: is the third moment zero? and is the fourth moment just given by the Gaussian piece?

Tristan Smith

Non-Gaussian estimation from the CMB

* The harmonic coefficients of the temperature field on the sky are related to the primordial curvature potential

$$a_{lm} = 4\pi (-i)^l \int \frac{d^3\mathbf{k}}{(2\pi)^3} \Phi(\mathbf{k}) g_{Tl}(k) Y_{lm}^*(\mathbf{\hat{k}})$$

so that correlations in harmonic space are also non-Gaussian

$$\begin{split} \langle a_{l_1m_1}a_{l_2m_2}\rangle &= C_{l_1}\delta_{l_1,l_2}\delta_{m_1m_2} \\ \langle a_{l_1m_1}a_{l_2m_2}a_{l_3m_3}\rangle &\sim f_{\rm nl}B_{l_1,l_2,l_3} \\ \langle a_{l_1m_1}a_{l_2m_2}a_{l_3m_3}a_{l_4m_4}\rangle_c &\sim \tau_{\rm nl}T_{l_1,l_2,l_3,l_4} \end{split}$$

Tristan Smith

Non-Gaussian estimation from the CMB

* To make progress we use a parameterization for the level of non-Gaussianity in the CMB maps

$$\Phi(\vec{x}) = \phi(\vec{x}) + f_{\rm nl} \left[\phi(\vec{x})^2 - \langle \phi(\vec{x})^2 \rangle \right]$$

where ϕ is a Gaussian random field and Φ is the primordial curvature potential

* We can see that, for instance, the three-point function is now non-zero:

$$\langle \Phi(\vec{x}_1) \Phi(\vec{x}_2) \Phi(\vec{x}_3) \rangle \sim f_{\rm nl} \langle \phi(\vec{x}_1) \phi(\vec{x}_3) \rangle \langle \phi(\vec{x}_2) \phi(\vec{x}_3) \rangle$$

Tristan Smith

Why do we want to do this?

- * Any constraint to primordial non-Gaussianity probes the physics of the very early universe
- * In particular, assuming that inflation was driven by a single field one can show [Creminelli and Zaldarriaga (2004)]

$$f_{
m nl} pprox rac{5}{12} (1 - n_s) \longrightarrow f_{
m nl} pprox 0.02$$

- * So that if we find $f_{\rm nl} > 0.02$ then all single field inflationary models will be ruled out
- * Measurement of the amplitude of the trispectrum, τ_{nl} , would give us additional constraints on the early-universe physics which produces non-Gaussianities

Non-Gaussian estimation

* Constraints to non-Gaussianity

Slosar et al. (2008)

Tristan Smith

Non-Gaussian estimation

* For the rest of this talk, we will work in a simplified limit: flatsky, Sachs-Wolfe limit

$$T(\hat{n}) = \int \frac{d^3 \vec{k}}{(2\pi)^3} \Phi(\vec{k}) \int_0^{\tau_0} d\tau e^{i\vec{k}\cdot\hat{n}(\tau_0 - \tau)} S(k, \tau)$$
$$a_{lm} = \int T(\hat{n}) Y_{lm}(\hat{n}) d^2 \hat{n}$$

flat-sky:
$$a(ec{l}) = \int T(\hat{n}) e^{i ec{l} \cdot \hat{n}} d^2 \hat{n}$$

Sachs-Wolfe: $S_{SW}(k,\tau)=rac{1}{3}\delta(au- au_D)$

Non-Gaussian estimation

- * Constraints to non-Gaussianity
- *WMAP constraint on bispectrum:

$$f_{\rm nl} = 32 \pm 21 \ (68\%)$$

Komatsu et al. (2010)

*WMAP constraint on trispectrum:

$$\tau_{\rm nl} = (0.96 \pm 0.68) \times 10^4$$

Smidt et al. (2010)

Tristan Smith

Estimators for $f_{ m nl}$ and $au_{ m nl}$

* Expectation values of the harmonic coefficients are given by

$$\langle a(\vec{l}_1)a(\vec{l}_2)a(\vec{l}_3)\rangle = f_{\rm nl}B(l_1, l_2, l_3)\delta_{\vec{l}_1 + \vec{l}_2 + \vec{l}_3}$$

$$\langle a(\vec{l}_1)a(\vec{l}_2)a(\vec{l}_3)a(\vec{l}_4)\rangle = \tau_{\rm nl}T(\vec{l}_1,\vec{l}_2,\vec{l}_3,\vec{l}_4)\delta_{\vec{l}_1+\vec{l}_2+\vec{l}_3+\vec{l}_4}$$

*We can construct an estimator as a weighted sum, i.e.

$$\widehat{f}_{\text{nl}} = N^{-1} \sum_{\vec{l}_1, \vec{l}_2, \vec{l}_3} a(\vec{l}_1) a(\vec{l}_2) a(\vec{l}_3) W(\vec{l}_1, \vec{l}_2, \vec{l}_3)$$

* We optimize this estimator by requiring the signal-to-noise to be maximized

Estimators for $f_{ m nl}$ and $au_{ m nl}$

* Maximizing the S/N gives an inverse-variance weighted sum:

$$\widehat{f}_{\text{nl}} = \frac{1}{N} \sum_{\vec{l}_1 + \vec{l}_2 + \vec{l}_3 = 0} \frac{a(\vec{l}_1)a(\vec{l}_2)a(\vec{l}_3)B(l_1, l_2, l_3)}{C_{l_1}C_{l_2}C_{l_3}}$$

$$\widehat{\tau_{\text{nl}}} = \frac{1}{N} \sum_{\vec{l}_1 + \vec{l}_2 + \vec{l}_3 + \vec{l}_4 = 0} \frac{a(\vec{l}_1)a(\vec{l}_2)a(\vec{l}_3)a(\vec{l}_4)T(\vec{l}_1, \vec{l}_2, \vec{l}_3, \vec{l}_4)}{C_{l_1}C_{l_2}C_{l_3}C_{l_4}}$$

*What are the statistics of these estimators? Usually we assume the central limit theorem applies...

Tristan Smith

Examples of non-Gaussian PDFs

* At its core, these estimators are a weighted sum of the product of Gaussian random variables:

$$\widehat{A} = \sum_{i,j,k} W_{i,j,k} a_i a_j a_k$$

* The simplest case is $W_{i,j,k}=1$

$$\widehat{A} = \sum_{i,j,k} a_i a_j a_k$$
$$= \left(\sum_i a_i\right)^3$$

Tristan Smith

Statistics of the estimators

$$\widehat{f_{\mathrm{nl}}} = \frac{1}{N} \sum_{\vec{l}_1 + \vec{l}_2 + \vec{l}_3 = 0} \frac{a(\vec{l}_1)a(\vec{l}_2)a(\vec{l}_3)B(l_1, l_2, l_3)}{C_{l_1}C_{l_2}C_{l_3}}$$

$$\widehat{\tau_{\mathrm{nl}}} = \frac{1}{N} \sum_{\vec{l}_1 + \vec{l}_2 + \vec{l}_3 + \vec{l}_4 = 0} \frac{a(\vec{l}_1)a(\vec{l}_2)a(\vec{l}_3)a(\vec{l}_4)}{C_{l_1}C_{l_2}C_{l_3}}$$
*An observation give measurements
$$* \text{For } \widehat{f_{\mathrm{nl}}} \text{ we central limit theorem} \text{ does not apply!}$$

$$* \text{For } \widehat{f_{\mathrm{nl}}} \text{ we central limit theorem} \text{ does not apply!}$$

$$* \text{For } \widehat{\tau_{\mathrm{nl}}} \text{ we central limit theorem} \text{ does not apply!}$$

$$* \text{For } \widehat{\tau_{\mathrm{nl}}} \text{ we central limit theorem} \text{ does not apply!}$$

Tristan Smith

Examples of non-Gaussian PDFs

* At its core, the bispectrum $f_{\rm nl}$ estimator is a weighted sum of the product of three Gaussian random variables:

$$\widehat{A} = \sum_{i,j,k} W_{i,j,k} a_i a_j a_k$$

* The simplest case is $W_{i,j,k} = 1$

$$\widehat{A} = \sum_{i,j,k} a_i a_j a_k$$
$$= \left(\sum_i a_i\right)^3$$

Computationally intensive

- * 1000 realizations takes at least 1000 CPU-hours!
- *This is good enough to determine the variance of the estimator, but not to determine the shape of the PDF
- * For a non-Gaussian process, 1000 realizations gives the following histogram:

Tristan Smith

Tristan Smith

Non-Gaussian estimation

* Flat sky/ Sachs Wolfe will reproduce the correct scalings and give order of magnitude estimates:

Computationally intensive

- * 1000 realizations takes at least 500 CPU-hours!
- * This is good enough to determine the variance of the estimator, but not to determine the shape of the PDF
- * For a non-Gaussian process, 1000 realizations gives the following histogram; for 10^5 realizations we find this (!!):

Tristan Smith

Full shape of the PDF

* First investigate the shape of the PDF for $P_f(\widehat{f_{
m nl}};f_{
m nl}=0,l_{
m max})$

Full shape of the PDF

* Doing the same for $P_{ au}(\widehat{ au_{
m nl}};f_{
m nl}=0,l_{
m max}$), we find it is highly

non-Gaussian:

Tristan Smith

BERKELEY CENTER for COSMOLOGICAL PHYSICS

BERKELEY CENTER for

Full shape of the PDF

- * For $f_{\rm nl} \neq 0$ the non-Gaussianity in the map imparts additional non-Gaussianity to the bispectrum PDF and trispectrum PDF
- * For $l_{
 m max} \simeq 3000$, $f_{
 m nl} = 30$, and $au_{
 m nl} = 900$

* In addition, the variance of these estimators depends on the value of $f_{\rm nl}$ and $\tau_{\rm nl}...$

Tristan Smith

Full shape of the PDF

- * For $f_{\rm nl} \neq 0$ the non-Gaussianity in the map imparts additional non-Gaussianity to the bispectrum PDF and trispectrum PDF
- * For $l_{\rm max} \simeq 3000$, $f_{\rm nl} = 30$, and $\tau_{\rm nl} = 900$

Evolution of the variance

* The fact that the variance depends on $f_{\rm nl}$ and $\tau_{\rm nl}$ is easy to see:

$$\widehat{f}_{nl} = \frac{1}{N} \sum_{\vec{l}_1 + \vec{l}_2 + \vec{l}_3 = 0} \frac{a(\vec{l}_1)a(\vec{l}_2)a(\vec{l}_3)B(l_1, l_2, l_3)}{C_{l_1}C_{l_2}C_{l_3}}$$

$$a(\vec{l}) = \bar{a}(\vec{l}) + f_{nl}\delta a^2(\vec{l})$$

$$\widehat{f}_{nl} = F_0 + f_{nl}F_1 + f_{nl}^2F_2 + f_{nl}^3F_3$$

$$\langle \widehat{f}_{nl}^2 \rangle = \sum_{i,j} \langle F_i F_j \rangle (f_{nl})^{i+j}$$

Evolution of the variance

* Our calculations show that the variances of these estimators scale with $l_{\rm max}$ as:

$$\sigma_{f_{
m nl}}^2 = rac{1}{72Al_{
m max}^2 \ln(l_{
m max})} + rac{f_{
m nl}^2}{2 \ln^3(l_{
m max})}$$

$$\sigma_{\tau_{\rm nl}}^2 = \frac{1.74 \times 10^{-2}}{A^2 l_{\rm max}^4} + \frac{0.028 \tau_{\rm nl}}{A l_{\rm max}^2} + 0.23 \tau_{\rm nl}^2$$

* Now we have everything we need to evaluate the significance of a hypothetical detection...

Tristan Smith

Dispelling a claim

* In 2006 Kogo and Komatsu claimed that for large enough $l_{\rm max}$ the trispectrum estimator has a larger S/N than the bispectrum estimator

$$\sigma_{f_{\rm nl}}^2 = \frac{1}{72Al_{\rm max}^2 \ln(l_{\rm max})}$$

$$\sigma_{\tau_{\rm nl}}^2 = \frac{1.74 \times 10^{-2}}{A^2 l_{\rm max}^4}$$

* With the correct scaling, we can see that the bispectrum estimator will always have a higher S/N

What could have gone wrong?

*Our full calculations give

$$f_{\rm nl} = 30^{+7.25}_{-5.5} (95\% \text{ C.L.})$$

 $\tau_{\rm nl} < 250 (95\% \text{ C.L.})$

* If we did not take into account the non-Gaussian shape of the PDF then we would have concluded

$$f_{\rm nl} = 30^{+7.5}_{-5.4} \ (95\% \text{ C.L.})$$

 $\tau_{\rm nl} < 1000 \ (95\% \text{ C.L.})$

* If, in addition, we did not take into account how the variance depends on the amplitudes we would have concluded

$$f_{\rm nl} = 30 \pm 2.8 \; (95\% \; {\rm C.L.})$$

 $\tau_{\rm nl} < 90 \; (95\% \; {\rm C.L.})$

Tristan Smith

BERKELEY CENTER for

Conclusions

- * Small-scale CMB observations show an anomalously large value for $N_{
 m eff}$
- * Explored how observations probe the interaction/clustering properties of this anomalous radiative energy density
- * We found that with an expanded parameterization the data is still at odds with the standard neutrino sector at > 95 % CL and consistent with a non-interacting fluid
- * The central limit theorem does not apply to non-Gaussian estimators- PDFs of these estimators may, themselves, be non-Gaussian
- * The effect on the bispectrum estimator is small; the effect on the trispectrum estimator is large- must be included when stating the significance of a measurement