

Overview

- Milky Way Formation, Dwarf Galaxies, Halo Substructures
- The Dark Energy Survey (DES)
- Latest Milky Way Science Discoveries from DES

Overview

- Milky Way Formation, Dwarf Galaxies, Halo Substructures
- The Dark Energy Survey (DES)
- Latest Milky Way Science Discoveries from DES

The Formation of Milky Way

ELS Monolithic Collapse Model (top-down)

Eggen, Lynden-Bell, and Sandage 1962 Milky Way formed from the rapid collapse of a large proto-galactic nebula

SZ Merger and Accretion Model (bottom-up)

Searle & Zinn 1978

Galaxies are built up from merging or accreting smaller fragments N-body simulations under ΛCDM context

Milky Way Satellite Galaxies

Segue 1

Finding Milky Way Satellite Galaxies

Koposov et al. (2008) Walsh et al. (2009) Willman et al. (2010)

Color-Magnitude Domain

Spatial Domain

Known Dwarf Galaxies after SDSS

Why studying the Milky Way dwarf galaxies

- A test of Lambda Cold Dark Matter (ΛCDM) Paradigm
 - Cold vs. Warm vs. Decay vs Self-interacting?
- Missing Satellites Problem?
 - CDM simulations predict thousands of dark matter substructures
 - Only dozens of dwarf galaxies are found
- Cusp/core Problem?
 - Simulations predict cuspy central density profiles, while observations suggest constant-density cores
- Indirect Dark Matter Search
 - Clean no astrophysical source
 - Dynamical mass from kinematics

Stellar Stream

 Milky Way stellar halo is formed by accreting other galaxies.

Known Diffuse Halo Substructures after SDSS

Known Diffuse Halo Substructures after SDSS

Morphology of Tidal Debris

- Stellar Debris Streams
 - mildly eccentric orbit
- Stellar Debris Clouds
 - highly eccentric orbit

Johnston et al. 2008

Why Study the Milky Way Halo Substructure?

- Hierarchical merging is predicted by ΛCDM.
 - What are the progenitors? How did the merging event happen?
 - Where is the thick disk from?
 - Inner halo vs. outer halo.
 - Halo formation: In Situ vs. Accretion vs. Kick out?
- Milky Way Dark Matter Potential
 - Distribution of Milky Way Dark Matter Halo, 1/r²?
 - Spherical vs. Triaxial?

Overview

- Milky Way Formation, Dwarf Galaxies, Halo Substructures
- The Dark Energy Survey (DES)
- Latest Milky Way Science Discoveries from DES

Collaborators: Darren DePoy, Jennifer Marshall, Douglas Tucker, Gary Bernstein, Rick Kessler, Eli Rykoff, David Burke.... and the Dark Energy Survey Calibration Team

The Dark Energy Survey (DES)

- Constrain the Dark Energy Equation of State with:
 - Supernova
 - Weak Lensing
 - Large Scale Structure
 - Galaxy Clusters

DECam

- 62 2k x 4k CCDs
- 570 megapixel camera
- < 20s readout time
- ~3 deg² field-of-view
- Unprecedented

Forecast

DES Year 1 vs. SDSS on Messier 2

 A dramatic improvement in the photometric precision using Blanco+DECam.

And this is just Year 1—deeper, more precise photometry will be produced throughout the five-year survey

aTmCam

THE DARK Atmospheric Transmission Monitoring Camera

- Robotic
- 4 narrowband filters
- Imager

- Purpose: derive and model the shape of atmospheric transmission
- Bonus: can also monitor the photometricity, but small FOV

Li et al. 2012, 2014, SPIE

DECal

Spectroscopic Calibration System for DECam

- Measure the instrument throughput vs. wavelength for every pixel on the CCD
- Monochromatic light: ~2nm width
- Scan during cloudy night (light leaks at Blanco)
- Out-of-band light inspection
- Instrument throughput vs. position on focal plane
- Instrument throughput vs. time
- Relative throughput shape

Sub-1% Photometry with DES

Auxiliary system to monitor the atmosphere and the instrument

aTmCam measures the atmospheric throughput!

DES bandpasses & atmospheric throughput

Water vapor 3mm vs. 13 mm

Li et al. in prep (DES Collaboration)

Sub-1% Photometry with DES

Auxiliary system to monitor the atmosphere and the instrument

DECal measures the instrumental throughput!

DECal scan results in i-band

center vs. edge

Li et al. in prep (DES Collaboration)

Overview

- Milky Way Formation and Halo Substructures
- The Dark Energy Survey (DES)
- Latest Milky Way Science Discoveries from DES

Collaborators: Jennifer Marshall, Josh Simon, Marla Geha, Brian Yanny, Eduardo Balbinot, Alex Drlica-Wagner, Keith Bechtol, Basilio Santiago.... and DES Milky Way Science Working Group.

Known Diffuse Halo Substructures Before DES

Phoenix Stream

- Density map with MSTO stars from Year 1 DES data
- A narrow stream stands out from the density map

Balbinot, Li + 2015 (DES Collaboration)

- stream width ~54 pc
- progenitor likely to be a globular cluster
- heliocentric distance ~ 17.5 kpc

Galactic coordinates

Li et al. 2015 (DES Collaboration)

Overdensity also shows in color-magnitude space

Li et al. 2015 (DES Collaboration)

Distance: ~16kpc from sun

Size: ~4kpc x ~3kpc in projection Luminosity: ~10⁵ solar luminosity

Polar Structure?

- Polar orbit formed by EriPhe, Virgo overdensity and Hercules-Aquila cloud
 - close to VPOS plane

Li et al. 2015 (DES Collaboration)

Polar Structure?

- Polar orbit formed by EriPhe, Virgo overdensity and Hercules-Aquila cloud
 - close to VPOS plane

Polar Structure?

 Polar orbit formed by EriPhe, Virgo overdensity and Hercules-Aquila cloud

Spectroscopic Follow-up Proper motion Modeling

NGC 1261

LMC stream discovery using DES data

Mackey et al 2015 Using public Y1 DES image data

Modeling predicted by Jin & Lynden-Bell 2008

Known Dwarf Galaxies Before DES

Dwarf Galaxy Candidates

Y1+Y2 data release

Bechtol et al. 2015 Drlica-Wagner et al. 2015 (DES Collaboration)

Reticulum II

Reticulum II: Newest Dwarf Galaxy?

Bechtol et al. 2015 (DES Collaboration)

Reticulum II: Spectroscopy Campaign

Magellan/M2FS

Gemini/GMOS

VLT/GIRAFFE

Simon, Li + 2015 (DES Collaboration)

Reticulum II: Newest Dwarf Galaxy

- Velocity peak indicative of a gravitationally bound object
- Dynamical mass calculated from the velocity dispersion
- Every measured characteristic of Reticulum is consistent with the known population of dwarf galaxies

Quantity	Value
Systemic Velocity	$v = 62.8 \pm 0.5 \mathrm{km}\mathrm{s}^{-1}$
Velocity Dispersion	$\sigma_v = 3.3 \pm 0.7 \mathrm{km s^{-1}}$
Metallicity	$[{ m Fe/H}] = -2.65 \pm 0.07$
Metallicity Dispersion	$\sigma_{\rm [Fe/H]} = 0.28 \pm 0.09$
Dynamical Mass	$M_{1/2} = 5.6 \pm 2.4 \times 10^5 \mathrm{M}_{\odot}$
Mass-to-Light Ratio	$M/L = 470 \pm 210 \mathrm{M}_{\odot}/\mathrm{L}_{\odot}$
	//3

Dark Matter Searches in Gamma Rays

- Search for discrete gamma-ray sources coincident with the DES dwarf galaxy candidates
- No significant gamma-ray sources detected over background
- Most significant excess coincident with Reticulum II
 - LAT Collaboration, Pass 8: local pvalue = 0.06 (1.5σ)
 - Geringer-Sameth+, Pass 7: local pvalue = 0.01 (2.3σ)

 How does the expected dark matter annihilation signal from Reticulum II compare to other dwarf galaxies?

Drlica-Wagner et al. 2015 (LAT & DES Collaboration) (see also Geringer-Sameth et al. 2015)

Dark Matter Searches in Gamma Rays

Dark Matter Searches in Gamma Rays

Simon, Li + 2015 (DES Collaboration)

Dwarf Galaxy Candidates

Y1+Y2 data release

Satellites of the Magellanic System?

Bechtol et al. 2015 Drlica-Wagner et al. 2015 (DES Collaboration)

Looking Forward

More spectroscopic follow-ups

- Magellan
- VLT
- Keck
- AAT

- DES Year 2 catalog construction
- DES Year 3 operation

Summary

- Large-area imaging surveys provide extremely powerful datasets to study substructures in the Milky Way halo.
- A lot of dwarf galaxies and substructures have been discovered in the DES
- Spectroscopic follow-up is underway!
 - Constrain the orbits of EriPhe and Phoenix Stream
 - Confirm the dwarf galaxies