# Star Formation and Mass Assembly in High Redshift Galaxy Clusters

S. A. Stanford (UCD)

Berkeley

4 May 2010



# WISE

#### NASA MIDEX - Ned Wright, PI

- MIR imaging of the whole sky in 6 months
- passbands: 3.4, 4.6, 12, 22 microns
- Sensitivities: 75, 100, 1000, 5000 uJy

# WISE

#### NASA MIDEX - Ned Wright, PI

- MIR imaging of the whole sky in 6 months
- passbands: 3.4, 4.6, 12, 22 microns
- Sensitivities: 75, 100, 1000, 5000 uJy

#### Status

- Launched 12 December 2009
- Survey started in January 2010; finish in July 2010
- Cryogen expected to last until November 2010
- First data released planned for April 2011



Tuesday, May 4, 2010



Tuesday, May 4, 2010



Tuesday, May 4, 2010









# Outline

Motivation - massive galaxy formation

# Outline

### Motivation - massive galaxy formation Discovery of High-z Clusters

- Why search in the infrared?
- The Bootes survey

# Outline

### Motivation - massive galaxy formation Discovery of High-z Clusters

- Why search in the infrared?
- The Bootes survey

#### Cluster Galaxy Evolution since z~1.5

- Stellar populations
- Stellar mass assembly history
- Star forming properties and extreme cases (AGN, DOGs, etc)

#### Collaborators

Peter Eisenhardt (JPL/Caltech)

PI of IRAC Shallow Survey

Anthony Gonzalez (U. Florida)

**Cluster Detections** 

Mark Brodwin (CfA)

Photometric redshifts

Dan Stern (JPL/Caltech)

Optical spectroscopy

Lexi Moustakas, Conor Macone, Greg Zeimann, Arjun Dey, Buell Januzzi, Michael Brown, Audrey Galametz, Chris Kochanek, Kyle Dawson, Josh Myers, Christina Jones

## Origin of Massive Galaxies

SFR peaks at 1<z<2

Most of the stellar mass is created in this regime

Clusters contain lots of massive galaxies



Dickinson et al. (2003)

### Origin of Massive Galaxies

SFR peaks at 1<z<2

Most of the stellar mass is created in this regime

Clusters contain lots of massive galaxies



Dickinson et al. (2003)

# Origin of Massive Galaxies



Le Floc'h et al. (2005) (see also Papovich et al. 2006)

*Caputi et al.* (2007)

# Origin of Massive Galaxies: Effect of Environment



Elbaz, et al. (2007) (see also Cooper et al. 2008; Muzzin et al. 2008)



Brodwin et al. (2008) (see also Pope et al. 2008)

#### Why Study High-z Galaxy Clusters?

#### Cosmology

- Measure parameters
- Probe the nature of dark energy

#### Growth of Large Scale Structure

Test numerical simulations, HOD modeling

#### Clusters of \*Galaxies\*

 Efficient probe of galaxy formation and evolution, particularly massive galaxies

# Why the IR?

- Infrared selection detects all *massive* galaxies to high redshift
- Bulk of field galaxies <u>avoided</u> (they tend to be blue, low mass and low z)
  - ⇒ Contamination (e.g. "Projection") minimized
  - ⇒ Contrast for real clusters increased

#### NIR k-correction is your friend

- Bruzual & Charlot model
  - 0.1 Gyr Burst,  $z_f = 3$
  - $H_0 = 70$ ;  $\Omega_M = 0.3$ ;  $\Omega_{\Lambda} = 0.7$
- Red galaxies quickly fade in optical due to strong Kcorrection
- Near-IR better; hard to get deep, large areas
- Mid-IR best, with flat sensitivity at 0.7 < z < 2+. Wide-field mapping surprisingly efficient with *Spitzer-IRAC*.



#### NOAO Deep-Wide Field Survey



Optical Alone

Eisenhardt et al. (2008)



Optical

Mid-IR



#### **Search Method**

- Photometric Redshift Probability Functions, P(z), are generated for a flux-limited 4.5μm sample, containing 200,000 galaxies over 8.5 deg², from NDWFS B<sub>w</sub>RI and Spitzer/IRAC [3.6][4.5] photometry.
- Wavelet detection algorithm, tuned to ~500 kpc scales, is run on the 3D  $\{\alpha, \delta, P(z)\}$  catalog, resulting in cluster probability density maps, from which candidates are selected.
- Method is independent of the tightness, <u>or even the</u> <u>presence</u>, of the cluster red-sequence.

#### **Photometric Redshifts**



Brodwin et al. 2006 (ApJ, 651, 791)

#### **Photometric Redshifts**



Brodwin et al. 2006 (ApJ, 651, 791)

#### Cluster Probability Density Map





Distant Galaxy Cluster IR Survey
NASA / JPL-Caltech / M. Brodwin (JPL)

Spitzer Space Telescope • IRAC sig06-015



Tuesday, May 4, 2010

# **Spectroscopic Confirmation**

- Keck spectroscopy of z>1 candidates
- 16 confirmed with 5+ members within 2000 km/s in the rest-frame (approx Δz ± 0.015)
- Remaining candidates need deeper data (many objects with faint, red continua)

Eisenhardt et al. 2008

\* Not yet published

| ID   | Phot-z | Spec-z | #  |
|------|--------|--------|----|
| 51   | 1.02   | 1.06   | 7  |
| 152  | 1.02   | 1.06   | 6  |
| 123  | 1.05   | 1.09   | 6  |
| 19   | 1.06   | 1.07   | 20 |
| 17   | 1.12   | 1.11   | 24 |
| 34   | 1.12   | 1.13   | 8  |
| 14   | 1.16   | 1.16   | 5  |
| 50*  | 1.18   | 1.24   | 5  |
| 342  | 1.26   | 1.24   | 11 |
| 30   | 1.19   | 1.26   | 9  |
| 29   | 1.30   | 1.34   | 10 |
| 25   | 1.44   | 1.37   | 5  |
| 22   | 1.40   | 1.41   | 10 |
| 206* | 1.45   | 1.43   | 5  |

### Redshift Accuracy



# Redshift Distribution of Galaxy Clusters at 0 < z < 2

#### Results

- 335 clusters and groups at 0 < z < 2 over 8 deg² in Boötes.
- Of these 116 are at z ≥ 1, a 5fold increase over the number of confirmed high-z clusters in the literature.





# Color Evolution of Galaxy Clusters over 0 < z < 1.7

- Massive cluster galaxies redder/older
  - Mass-Metallicity relation to z=1.5, and/or
  - Downsizing
- Passive Evolution Model
  - Bruzual & Charlot model
  - 0.1 Gyr Burst at z<sub>f</sub> = 3, followed by simple passive evolution
  - $H_0=70$ ;  $\Omega_M=0.3$ ;  $\Omega_\Lambda=0.7$



Eisenhardt, Brodwin et al. 2008 (ApJ, 684, 905)

### Stellar Population Evolution

#### **Points**

Massive Cluster Galaxies (L>L\*)

#### **PE Models**

Passive evolution after monolithic collapse at formation redshift: z<sub>f</sub> = [1.5, 2, 3, 4, 5, 30]



Eisenhardt, Brodwin et al. 2008 (ApJ, 684, 905)

#### Galaxy Mass Evolution?













Tuesday, May 4, 2010



#### High SFR in z>1 Clusters

$$1.3 < z < 1.5$$
  
 $1.0 < z < 1.3$ 

- SFR increases towards the cluster center in 15 1<z<1.5 clusters</li>
- More extreme for z>1.3
- The specific SFR is roughly flat to decreasing

Brodwin et al.



# Cluster/ ULIRG Connection?



*ISCS; MB et al. (2007)* 

# **AGN Activity in Clusters**



Eastman et al. (2007)



ISCS; Galametz et al. (2009) from XBootes

## **Future Plans**

- Combine new WFC3 NIR imaging with existing ACS data to make precise CMD
- •Measure sizes of cluster members in WFC3 NIR imaging
- •Measure SFR from WFC3 NIR grism spectroscopy
- •Better determine incidence of AGN using moderate-depth Chandra ACIS data

# **Summary & Conclusions**

- We have identified 335 galaxy clusters and groups in the 8 deg² area of the NDWFS. To date 16 clusters between 1 < z < 1.5 and 122 clusters at z < 1 have been confirmed. Cluster photometric redshift accuracy is σ = 0.028 (1+z). Clusters are effectively mass-selected.</li>
- Mean colors of clusters at 0 < z < 1.5 are consistent with simple Passive Evolution models with high formation redshifts  $(z_f > 3)$ .
- Evidence of a mass-metallicity relation continuing to z~2
- Evolution in the LFs suggests mass assembly at z > 1.4 in the massive galaxy population of clusters.
- Evidence of ongoing massive SF in z>1 cluster cores, along with a strong radial dependence of AGN in z>1 clusters.