Are Two Metrics Better than One? The Cosmology of Massive (Bi)gravity

Adam R. Solomon

DAMTP, University of Cambridge

UC Berkeley, September 5th, 2014

Bicollaborators:

Oslo:

Yashar Akrami Phil Bull

Heidelberg:

Luca Amendola Frank Könnig

Madrid:

Domenico Sapone

Based on: arXiv:1404.4061

arXiv:1407.4331

arXiv:1409.xxxx

arXiv:1409.xxxx

Stockholm/Nordita:

Jonas Enander Tomi Koivisto Edvard Mörtsell

Geneva:

Mariele Motta

Outline

- Introduction and motivation
- Background cosmology
- Stability around cosmological backgrounds
- Predictions: subhorizon structure formation
- Mew frontiers: coupling to both metrics

Why bother with this weird theory with two metrics?

Isn't one metric enough?

Why consider two metrics?

- Field theoretic interest: how do we construct consistent interactions of multiple spin-2 fields?
 - * NB "Consistent" crucially includes ghost-free
- My motivation: modified gravity > massive graviton
 - The next decade will see multiple precision tests of GR – we need to understand the alternatives
 - ② The accelerating universe

Dark energy or modified gravity?

Einstein's equation + the Standard Model + dark matter predict a decelerating universe, but this contradicts observations. The expansion of the Universe is accelerating!

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi G T_{\mu\nu}$$

What went wrong?? Two possibilities:

- ⊕ Dark energy: Do we need to include new "stuff" on the RHS?
- Modified gravity: Are we using the wrong equation to describe gravity at cosmological distances?

Cosmic acceleration has theoretical problems which modified gravity might solve

- Technically natural self-acceleration: Certain theories of gravity may have late-time acceleration which does not get destabilized by quantum corrections.
 - This is THE major problem with a simple cosmological constant
- Degravitation: Why do we not see a large CC from matter loops? Perhaps an IR modification of gravity makes a CC invisible to gravity
 - This is natural with a massive graviton due to short range

Why consider two metrics?

Take-home message: Massive bigravity is a natural, exciting, and still largely unexplored new direction in modifying GR.

How can we do gravity beyond GR? Some famous examples

Brans-Dicke (1961): make Newton's constant dynamical: $G_N = 1/\phi$, gravity couples non-minimally to ϕ

$$S = \int d^4x \frac{1}{16\pi} \sqrt{-g} \left[\phi R - \frac{\omega(\phi)}{\phi} (\partial \phi)^2 \right]$$

f(R) (2000s): replace Einstein-Hilbert term with a general function f(R) of the Ricci scalar

$$S = \int d^4x \sqrt{-g} f(R)$$

How can we do gravity beyond GR?

- * These theories are generally not simple
 - Even f(R) looks elegant in the action, but from a degrees of freedom standpoint it is a theory of a scalar field non-minimally coupled to the metric, just like Brans-Dicke, Galileons, Horndeski, etc.

How can we do gravity beyond GR?

Most attempts at modifying GR are guided by Lovelock's theorem (Lovelock, 1971):

GR is the unique theory of gravity which

- Only involves a rank-2 tensor
- Has second-order equations of motion

- The game of modifying gravity is played by breaking one or more of these assumptions

Another path: degrees of freedom (or, Lovelock or Weinberg?)

- ⊕ GR is unique.
- But instead of thinking about that uniqueness through Lovelock's theorem, we can also remember that (Weinberg, others, 1960s)...

GR = massless spin-2

A natural way to modify GR: give the graviton mass!

Non-linear massive gravity is a very recent development

- At the linear level, the correct theory of a massive graviton has been known since 1939 (Fierz, Pauli)
- But in the 1970s, several issues most notably a dangerous ghost instability (mode with wrong-sign kinetic term) – were discovered

Non-linear massive gravity is a very recent development

- Only in 2010 were these issues overcome when de Rham, Gabadadze, and Tolley (dRGT) wrote down the ghost-free, non-linear theory of massive gravity
- See the reviews by de Rham arXiv:1401.4173, and Hinterbichler arXiv:1105.3735

dRGT Massive Gravity in a Nutshell

The unique non-linear action for a single massive spin-2 graviton is

$$S = -\frac{M_g^2}{2} \int d^4x \sqrt{-\det g} R$$
$$+ m^2 M_g^2 \int d^4x \sqrt{-\det g} \sum_{n=0}^4 \beta_n e_n \left(\sqrt{g^{-1}f}\right)$$

where $f_{\mu\nu}$ is an arbitrary reference metric which must be chosen at the start

- $\ensuremath{\mathfrak{B}}_n$ are the free parameters; the graviton mass is $\sim\!m^2\beta_n$
- The en are elementary symmetric polynomials given by...

$$S = -\frac{M_g^2}{2} \int d^4x \sqrt{-\det g} R + m^2 M_g^2 \int d^4x \sqrt{-\det g} \sum_{n=0}^4 \beta_n e_n \left(\sqrt{g^{-1}f} \right)$$

For a matrix X, the elementary symmetric polynomials are ([] = trace)

$$e_{0}(X) \equiv 1,$$

$$e_{1}(X) \equiv [X],$$

$$e_{2}(X) \equiv \frac{1}{2} \left([X]^{2} - [X^{2}] \right),$$

$$e_{3}(X) \equiv \frac{1}{6} \left([X]^{3} - 3 [X] [X^{2}] + 2 [X^{3}] \right),$$

$$e_{4}(X) \equiv \det(X)$$

Adam Solomon

Much ado about a reference metric?

There is a simple (heuristic) reason that massive gravity needs a second metric: you can't construct a non-trivial interaction term from one metric alone:

$$g^{\mu\alpha}g_{\nu\alpha} = \delta^{\mu}_{\nu}, \quad (g_{\mu\nu})^2 = 4, \quad \dots$$

- * We need to introduce a second metric to construct interaction terms.
- ★ There are many dRGT massive gravity theories.
- What should this metric be?

From massive gravity to massive bigravity

Simple idea (Hassan and Rosen, 2011): make the reference metric dynamical

$$S = -\frac{M_g^2}{2} \int d^4x \sqrt{-\det g} R(g) - \frac{M_f^2}{2} \int d^4x \sqrt{-\det f} R(f) + m^2 M_g^2 \int d^4x \sqrt{-\det g} \sum_{n=0}^4 \beta_n e_n \left(\sqrt{g^{-1}f}\right)$$

Resulting theory: one massless graviton and one massive – massive bigravity

From massive gravity to massive bigravity

- By moving from dRGT to bimetric massive gravity, we avoid the issue of choosing a reference metric (Minkowski? (A)dS? Other?)
 - Trading a constant matrix (f_{μν}) for a constant scalar (M_f) simplification!
 - ⊗ Better yet, M_f is redundant
- Allows for stable, flat FRW cosmological solutions (do not exist in dRGT)
- Bigravity is a very sensible theory to consider

Massive bigravity has selfaccelerating cosmologies

* Homogeneous and isotropic solution:

$$ds_g^2 = a^2 \left(-d\tau^2 + d\vec{x}^2 \right),$$

$$ds_f^2 = -X^2 d\tau^2 + Y^2 d\vec{x}^2$$

the background dynamics are determined by

$$3\mathcal{H}^{2} = \frac{a^{2}\rho}{M_{g}^{2}} + m^{2}a^{2}\left(\beta_{0} + 3\beta_{1}y + 3\beta_{2}y^{2} + \beta_{3}y^{3}\right) \qquad \left(y \equiv \frac{Y}{a}\right)$$

$$\beta_3 y^4 + (3\beta_2 - \beta_4) y^3 + 3(\beta_1 - \beta_3) y^2 + \left(\frac{\rho}{M_g^2 m^2} + \beta_0 - 3\beta_2\right) y - \beta_1 = 0$$

As $\rho \to 0$, y -> constant, so the mass term approaches a (positive) constant \rightarrow late-time acceleration

NB: We are choosing (for now) to only couple matter to one metric,

9_{μν}

A comprehensive comparison to background data was undertaken by Akrami, Koivisto, & Sandstad [arXiv:1209.0457]

Data sets:

- Luminosity distances from Type Ia supernovae (Union 2.1)
- Position of the first CMB peak angular scale of sound horizon at recombination (WMAP7)
- Baryon-acoustic oscillations (2dFGRS, 6dFGS, SDSS and WiggleZ)

- A comprehensive comparison to background data was undertaken by Akrami, Koivisto, & Sandstad (2012), arXiv:1209.0457
- Take-home points:
 - No exact ΛCDM without explicit cosmological constant (vacuum energy)
 - Dynamical dark energy
 - ⊕ Phantom behavior (w < -1) is common
 </p>
 - ✓ Viable alternative to ΛCDM

Y. Akrami, T. Koivisto, and M. Sandstad [arXiv:1209.0457] See also F. Könnig, A. Patil, and L. Amendola [arXiv:1312.3208]; ARS, Y. Akrami, and T. Koivisto [arXiv:1404.4061] $B_i \equiv rac{m^2}{H_0^2} eta_i$

Model	B_0	B_1	$\mathbf{B_2}$	B_3	B_4	$\Omega_{\mathbf{m}}$	χ^2_{\min}	p-value	log-evidence
$\Lambda \mathrm{CDM}$	free	0	0	0	0	free	546.54	0.8709	-278.50
$(\mathrm{B_1},\Omega_{\mathrm{m}}^{\mathrm{0}})$	0	free	0	0	0	free	551.60	0.8355	-281.73
$(\mathbf{B_2},\mathbf{\Omega_m^0})$	0	0	free	0	0	free	894.00	< 0.0001	-450.25
$(\mathrm{B_3},\Omega_{\mathrm{m}}^0)$	0	0	0	free	0	free	1700.50	< 0.0001	-850.26
$(\mathrm{B_1},\mathrm{B_2},\Omega_{\mathrm{m}}^0)$	0	free	free	0	0	free	546.52	0.8646	-279.77
$(\mathrm{B_1},\mathrm{B_3},\Omega_{\mathrm{m}}^0)$	0	free	0	free	0	free	542.82	0.8878	-280.10
$(\mathrm{B_2},\mathrm{B_3},\Omega_{\mathrm{m}}^{0})$	0	0	free	free	0	free	548.04	0.8543	-280.91
$(\mathrm{B_1},\mathrm{B_4},\Omega_{\mathrm{m}}^{\mathrm{0}})$	0	free	0	0	free	free	548.86	0.8485	-281.42
$(\mathrm{B_2},\mathrm{B_4},\Omega_{\mathbf{m}}^{0})$	0	0	free	0	free	free	806.82	< 0.0001	-420.87
$(\mathrm{B_3},\mathrm{B_4},\Omega_{\mathrm{m}}^0)$	0	0	0	free	free	free	685.30	0.0023	-351.14
$(B_1,B_2,B_3,\Omega_{\mathbf{m}}^0)$	0	free	free	free	0	free	546.50	0.8582	-279.61
$(B_1, B_2, B_4, \Omega_m^0)$	0	free	free	0	free	free	546.52	0.8581	-279.56
(B_1,B_3,B_4,Ω_m^0)	0	free	0	free	free	free	546.78	0.8563	-280.00
$(\mathrm{B_2},\mathrm{B_3},\mathrm{B_4},\Omega_{\mathrm{m}}^{\mathrm{0}})$	0	0	free	free	free	free	549.68	0.8353	-282.89
$(B_1,B_2,B_3,B_4,\Omega_{\mathbf{m}}^{0})$	0	free	free	free	free	free	546.50	0.8515	-279.60
full bigravity model	free	free	free	free	free	free	546.50	0.8445	-279.82

Y. Akrami, T. Koivisto, and M. Sandstad [arXiv:1209.0457] See also F. Könnig, A. Patil, and L. Amendola [arXiv:1312.3208]; ARS, Y. Akrami, and T. Koivisto [arXiv:1404.4061]

$$B_i \equiv rac{m^2}{H_0^2}eta_i$$

Model	$\mathbf{B_0}$	B ₁	$\mathbf{B_2}$	B_3	B_4	$\Omega_{\mathbf{m}}$	χ^2_{\min}	p-value	log-evidence
$\Lambda \mathrm{CDM}$	free	0	0	0	0	free	546.54	0.8709	-278.50
$(\mathrm{B_1},\Omega_{\mathrm{m}}^0)$	0	free	0	0	0	free	551.60	0.8355	-281.73
$(\mathrm{B_2},\Omega_\mathrm{m}^0)$	0	0	free	0	0	free	894.00	< 0.0001	450.25
$(\mathrm{B_3},\Omega_\mathrm{m}^0)$	0	0	0	free	0	free	1700.50	< 0.0001	850.26
(B_1,B_2,Ω_m^0)	0	free	free	0	0	free	546.52	0.8646	-279.77
$(\mathrm{B_1},\mathrm{B_3},\Omega_\mathrm{m}^0)$	0	free	0	free	0	free	542.82	0.8878	-280.10
$(\mathrm{B_2},\mathrm{B_3},\Omega_{\mathrm{m}}^0)$	0	0	free	free	0	free	548.04	0.8543	-280.91
$(\mathrm{B_1},\mathrm{B_4},\Omega_{\mathrm{m}}^0)$	0	free	0	0	free	free	548.86	0.8485	-281.42
$(\mathbf{B_2},\mathbf{B_4},\mathbf{\Omega_m^0})$	0	0	free	0	free	free	806.82	< 0.0001	-420.87
$(B_3, B_4, \Omega_{\mathrm{m}}^0)$	0	0	0	free	free	free	685.30	0.0023	351.14
$(B_1,B_2,B_3,\Omega_{\mathbf{m}}^0)$	0	free	free	free	0	free	546.50	0.8582	-279.61
(B_1,B_2,B_4,Ω_m^0)	0	free	free	0	free	free	546.52	0.8581	-279.56
(B_1,B_3,B_4,Ω_m^0)	0	free	0	free	free	free	546.78	0.8563	-280.00
$(\mathrm{B_2},\mathrm{B_3},\mathrm{B_4},\Omega_{\mathrm{m}}^{\mathrm{0}})$	0	0	free	free	free	free	549.68	0.8353	-282.89
$(B_1, B_2, B_3, B_4, \Omega_m^0)$	0	free	free	free	free	free	546.50	0.8515	-279.60
full bigravity model	free	free	free	free	free	free	546.50	0.8445	-279.82

Y. Akrami, T. Koivisto, and M. Sandstad [arXiv:1209.0457] See also F. Könnig, A. Patil, and L. Amendola [arXiv:1312.3208]; ARS, Y. Akrami, and T. Koivisto [arXiv:1404.4061]

 $\sim B_1 \operatorname{Tr}[\sqrt{g^{-1}f}]$

Model	$\mathbf{B_0}$	B ₁	$\mathbf{B_2}$	B_3	B_4	$\Omega_{ m m}$	χ^2_{min}	p-value	log-evidence
$\Lambda \mathrm{CDM}$	free	0	0	0	0	free	546.54	0.8709	-278.50
$(\mathrm{B_1},\Omega_{\mathrm{m}}^0)$	0	free	0	0	0	free	551.60	0.8355	-281.73
$(\mathrm{B_2},\Omega_\mathrm{m}^0)$	0	0	free	0	0	free	894.00	< 0.0001	450.25
$(\mathrm{B_3},\Omega_\mathrm{m}^0)$	0	0	0	free	0	free	1700.50	< 0.0001	850.26
$(\mathrm{B_1},\mathrm{B_2},\Omega_{\mathrm{m}}^0)$	0	free	free	0	0	free	546.52	0.8646	-279.77
$(\mathrm{B_1},\mathrm{B_3},\Omega_{\mathrm{m}}^0)$	0	free	0	free	0	free	542.82	0.8878	-280.10
$(B_2, B_3, \Omega_{\mathrm{m}}^0)$	0	0	free	free	0	free	548.04	0.8543	-280.91
$(\mathrm{B_1},\mathrm{B_4},\Omega_{\mathrm{m}}^0)$	0	free	0	0	free	free	548.86	0.8485	-281.42
$(B_2,B_4,\Omega_{\mathrm{m}}^0)$	0	0	free	0	free	free	806.82	< 0.0001	-420.87
$(B_3,B_4,\Omega_{\mathrm{m}}^0)$	0	0	0	free	free	free	685.30	0.0023	351.14
$(B_1,B_2,B_3,\Omega_{\mathbf{m}}^0)$	0	free	free	free	0	free	546.50	0.8582	-279.61
$(B_1,B_2,B_4,\Omega_{\rm m}^0)$	0	free	free	0	free	free	546.52	0.8581	-279.56
(B_1,B_3,B_4,Ω_m^0)	0	free	0	free	free	free	546.78	0.8563	-280.00
$(B_2, B_3, B_4, \Omega_{\rm m}^0)$	0	0	free	free	free	free	549.68	0.8353	-282.89
$(B_1, B_2, B_3, B_4, \Omega_m^0)$	0	free	free	free	free	free	546.50	0.8515	-279.60
full bigravity model	free	free	free	free	free	free	546.50	0.8445	-279.82

Scalar perturbations in massive bigravity

- Extensive analysis of perturbations undertaken by ARS, Akrami, and Koivisto, arXiv:1404.4061 Könnig, Akrami, Amendola, Motta, and ARS, arXiv:1407.4331
 - ⊗ See also Könnig and Amendola, arXiv:1402.1988
- & Linearize metrics around FRW backgrounds, restrict to scalar perturbations $\{E_{g,f}, A_{g,f}, F_{g,f}, and B_{g,f}\}$:

$$ds_g^2 = a^2 \left\{ -(1 + E_g)d\tau^2 + 2\partial_i F_g d\tau dx^i + \left[(1 + A_g)\delta_{ij} + \partial_i \partial_j B_g \right] dx^i dx^j \right\}$$

$$ds_f^2 = -X^2 (1 + E_f)d\tau^2 + 2XY \partial_i F_f d\tau dx^i + Y^2 \left[(1 + A_f)\delta_{ij} + \partial_i \partial_j B_f \right] dx^i dx^j$$

Full linearized Einstein equations (in cosmic or conformal time) can be found in ARS, Akrami, and Koivisto, arXiv: 1404.4061

- * Usual story: solve perturbed Einstein equations in quasistatic limit: $k^2\Phi\gg H^2\Phi\sim H\dot\Phi\sim\ddot\Phi$
- This is valid only if perturbations vary on Hubble timescales
- Cannot trust quasistatic limit if perturbations are unstable
- Check for instability by solving full system of perturbation equations

- Degree of freedom count: ten total variables
 - ullet Four $g_{\mu\nu}$ perturbations: E_g , A_g , B_g , F_g
 - \otimes Four $f_{\mu\nu}$ perturbations: E_f , A_f , B_f , F_f
 - lacktriangledown Two perfect fluid perturbations: δ and θ
- **Eight** are redundant:
 - ⊕ Four of these are nondynamical/auxiliary (Eg, Fg, Ef, Ff)
 - Two can be gauged away
 - After integrating out auxiliary variables, one of the dynamical variables becomes auxiliary
- End result: only two independent degrees of freedom

& Choose g-metric Bardeen variables:

$$\Phi \equiv A_g - H \left(F_g + B'_g \right)$$

$$\Psi \equiv E_g - H \left(F_g + B'_g \right) - F'_g - B''_g$$

Then *entire* system of 10 perturbed Einstein/fluid equations can be reduced to two coupled equations:

$$X_i'' + F_{ij}X_j' + S_{ij}X_j = 0$$

where

$$X_i = \{\Phi, \Psi\}$$

Ten perturbed Einstein/fluid equations can be reduced to two coupled equations:

$$X_i'' + F_{ij}X_j' + S_{ij}X_j = 0$$

where

$$X_i = \{\Phi, \Psi\}$$

 $oldsymbol{\otimes}$ Under assumption (WKB) that F_{ij} , S_{ij} vary slowly, this is solved by

$$X_i = X_i^0 e^{i\omega N}$$

with N = In a

Y. Akrami, T. Koivisto, and M. Sandstad [arXiv:1209.0457] See also F. Könnig, A. Patil, and L. Amendola [arXiv:1312.3208]; ARS, Y. Akrami, and T. Koivisto [arXiv:1404.4061] $\sim B_1 \operatorname{Tr}[\sqrt{g^{-1}f}]$

Model	$\mathbf{B_0}$	B ₁	$\mathbf{B_2}$	B_3	B_4	$\Omega_{ m m}$	χ^2_{min}	p-value	log-evidence
$\Lambda \mathrm{CDM}$	free	0	0	0	0	free	546.54	0.8709	-278.50
$(\mathrm{B_1},\Omega_{\mathrm{m}}^0)$	0	free	0	0	0	free	551.60	0.8355	-281.73
$(\mathrm{B_2},\Omega_\mathrm{m}^0)$	0	0	free	0	0	free	894.00	< 0.0001	450.25
$(\mathrm{B_3},\Omega_\mathrm{m}^0)$	0	0	0	free	0	free	1700.50	< 0.0001	850.26
$(\mathrm{B_1},\mathrm{B_2},\Omega_{\mathrm{m}}^0)$	0	free	free	0	0	free	546.52	0.8646	-279.77
$(\mathrm{B_1},\mathrm{B_3},\Omega_{\mathrm{m}}^0)$	0	free	0	free	0	free	542.82	0.8878	-280.10
$(B_2, B_3, \Omega_{\mathrm{m}}^0)$	0	0	free	free	0	free	548.04	0.8543	-280.91
$(\mathrm{B_1},\mathrm{B_4},\Omega_{\mathrm{m}}^0)$	0	free	0	0	free	free	548.86	0.8485	-281.42
$(B_2,B_4,\Omega_{\mathrm{m}}^0)$	0	0	free	0	free	free	806.82	< 0.0001	-420.87
$(B_3,B_4,\Omega_{\mathrm{m}}^0)$	0	0	0	free	free	free	685.30	0.0023	351.14
$(B_1,B_2,B_3,\Omega_{\mathbf{m}}^0)$	0	free	free	free	0	free	546.50	0.8582	-279.61
$(B_1,B_2,B_4,\Omega_{\rm m}^0)$	0	free	free	0	free	free	546.52	0.8581	-279.56
(B_1,B_3,B_4,Ω_m^0)	0	free	0	free	free	free	546.78	0.8563	-280.00
$(B_2, B_3, B_4, \Omega_{\rm m}^0)$	0	0	free	free	free	free	549.68	0.8353	-282.89
$(B_1, B_2, B_3, B_4, \Omega_m^0)$	0	free	free	free	free	free	546.50	0.8515	-279.60
full bigravity model	free	free	free	free	free	free	546.50	0.8445	-279.82

⊗ B₁-only model – simplest allowed by background

$$\omega_{B_1} = \pm \frac{k}{H} \frac{\sqrt{-1 + 12y^2 + 9y^4}}{1 + 3y^2}$$

Unstable for small y (early times)

Scalar fluctuations can suffer from instabilities

⊗ B₁-only model – simplest allowed by background

$$\omega_{B_1} = \pm \frac{k}{H} \frac{\sqrt{-1 + 12y^2 + 9y^4}}{1 + 3y^2}$$

- Unstable for small y (early times)
- \circledast For realistic parameters, model is only (linearly) stable for $z <\sim 0.5$

Scalar fluctuations can suffer from instabilities

- The instability is avoided by infinite-branch solutions, where y starts off at infinity at early times
- \otimes Background viability requires $B_1 > 0$
- \otimes Existence of infinite branch requires $0 < B_4 < 2B_1 i.e.$, turn on the f-metric cosmological constant

B₁-B₄ model: background dynamics

Scalar fluctuations can suffer from instabilities

- The instability is avoided by infinite-branch models, where y starts off at infinity at early times
- \otimes Background viability: $B_1 > 0$
- Infinite branch: $0 < B_4 < 2B_1 i.e.$, turn on the f-metric cosmological constant
- Catchy name: infinite-branch bigravity (IBB)
 - (Earlier proposal, infinite-branch solution (IBS), did not catch on

Instability does not rule models out

- Instability -> breakdown of linear perturbation theory
 - Mothing more
 - Mothing less
- Cannot take quasistatic limit for unstable models
- Need nonlinear techniques to make structure formation predictions

Scalar perturbations in the quasistatic limit

ARS, Y. Akrami, and T. Koivisto, arXiv:1404.4061 (gory details)

- We can take the quasistatic limit for infinite-branch bigravity
- ⊗ Specializing to this limit, and assuming only dust (P=0)...
 - * Five perturbations ($E_{g,f}$, $A_{g,f}$, and B_f B_g) are determined algebraically in terms of the density perturbation δ
 - $oldsymbol{\mathfrak{B}}$ Meanwhile, δ is determined by the same evolution equation as in GR:

$$\delta'' + \mathcal{H}\delta' + \frac{1}{2}k^2 E_g(\delta) = 0$$

$$\delta'' + \mathcal{H}\delta' + \frac{1}{2}k^2 E_g(\delta) = 0$$

(GR and massive bigravity)

 $\ensuremath{\mathfrak{B}}$ In GR, there is no anisotropic stress so E_g (time-time perturbation) is related to δ through Poisson's equation,

$$k^2 E_g = -(a^2 \bar{\rho}/M_g^2)\delta$$

- $\ensuremath{\mathfrak{B}}$ In bigravity, the relation beteen E_g and δ is significantly more complicated
 - modified structure growth

The "observables": Modified gravity parameters

$$ds_g^2 = a^2 \left[-(1 + E_g)d\tau^2 + (1 + A_g)\delta_{ij}dx^i dx^j \right]$$

We calculate three parameters which are commonly used to distinguish modified gravity from GR:

Growth rate/index (f/ γ): measures growth of structures

$$f(a,k) \equiv \frac{d\log\delta}{d\log a} \approx \Omega_m^{\gamma}$$

Modification of Newton's constant in Poisson eq. (○):

$$\frac{k^2}{a^2} A_g \equiv \frac{Q(a,k)\bar{\rho}}{M_g^2} \delta$$

GR:

 $\gamma \approx 0.545$

Anisotropic stress (η):

$$Q = \eta = 1$$

$$\eta(a,k) \equiv -\frac{A_g}{E_g}$$

The "observables": Modified gravity parameters

- We have analytic solutions (messy) for A_g and E_g as (stuff) x δ , so
 - Can immediately read off analytic expressions for Q and η:

$$Q = h_1 \left(\frac{1 + k^2 h_4}{1 + k^2 h_3} \right), \qquad \eta = h_2 \left(\frac{1 + k^2 h_4}{1 + k^2 h_5} \right)$$

(h_i are non-trivial functions of time; see ARS, Akrami, and Koivisto arXiv:1404.4061, App. B)

\otimes Can solve numerically for δ using Q and η :

$$\delta'' + \mathcal{H}\delta' - \frac{1}{2} \frac{Q}{\eta} \frac{a^2 \bar{\rho}}{M_a^2} \delta = 0$$

Infinite-branch bigravity: Expansion history

Constraints from SNe Ia (Union 2.1)

Infinite-branch bigravity: Structure formation

Growth constraints: 6dFGS, LRG200, LRG60, BOSS, WiggleZ, and VIPERS (compiled by Macaulay, Wehus, & Eriksen, arXiv:1303.6583)

Euclid and SKA forecasts for infinite-branch bigravity in prep.

[work with Yashar Akrami (Oslo), Phil Bull (Oslo), Tomi Koivisto (Nordita), and Domenico Sapone (Madrid)]

Bimetric Cosmology: Summary

- Some bimetric models do not give sensible backgrounds; others have instability
 - NB instability does not necessarily rule a model out
- One viable and stable model infinite-branch bigravity (IBB)
- BB deviates from ΛCDM at background level and in structure formation. Euclid (2020s) should settle the issue.
- Extensive analysis of perturbations undertaken by ARS, Akrami, & Koivisto in arXiv:1404.4061; stability by Könnig, Akrami, Amendola, Motta, & ARS in arXiv:1407.4331
 - See also Könnig and Amendola, arXiv:1402.1988
- In prep: Euclid forecasts, ISW

Generalization: Doubly-coupled bigravity

- Question: Does the dRGT/Hassan-Rosen bigravity action privilege either metric?
- No: The vacuum action (kinetic and potential terms) is symmetric under exchange of the two metrics:

$$S = -\frac{M_g^2}{2} \int d^4x \sqrt{-\det g} R(g) - \frac{M_f^2}{2} \int d^4x \sqrt{-\det f} R(f) + m^2 M_g^2 \int d^4x \sqrt{-\det g} \sum_{n=0}^4 \beta_n e_n \left(\sqrt{g^{-1}f}\right)$$

Symmetry: $g_{\mu\nu} \Leftrightarrow f_{\mu\nu}$, $M_g \Leftrightarrow M_f$, $\beta_n \Leftrightarrow \beta_{4-n}$

Generalization: Doubly-coupled bigravity

- Most bimetric matter couplings reintroduce the ghost
 - Recent development: arXiv:1408.0487, arXiv:1408.1678
- © Candidate ghost-free double coupling (1408.1678): matter couples to an effective (Jordan-frame) metric:

$$g_{\mu\nu}^{\text{eff}} = \alpha^2 g_{\mu\nu} + 2\alpha\beta g_{\mu\alpha} \left(\sqrt{g^{-1}f}\right)_{\nu}^{\alpha} + \beta^2 f_{\mu\nu}$$

- Rationale (see 1408.1678, 1408.5131): $\sqrt{\text{-det g}_{\text{eff}}}$ is of the same form as the massive gravity/bigravity interaction terms!
 - Matter loops will generate ghost-free interactions between g and f

Doubly-coupled cosmology

Enander, ARS, Akrami, and Mörtsell [arXiv:1409.xxxx – early next week]

- Novel features (compared to singly-coupled):
 - & Can have conformally-related solutions, $f_{\mu\nu}=(\beta/\alpha)^2g_{\mu\nu}$
 - These solutions can mimic exact ∧CDM (no dynamical DE)
 - Only for special parameter choices
 - Models with only $\beta_2 \neq 0$ or $\beta_3 \neq 0$ are now viable at background level

Doubly-coupled cosmology

- **Candidate partially massless theory has non-trivial dynamics**
 - $\beta_0 = \beta_4 = 3\beta_2$, $\beta_1 = \beta_3 = 0$: has partially-massless symmetry around maximally symmetric (dS) solutions (arXiv:1208.1797)
 - New gauge symmetry which eliminates the helicity-0 mode (no fifth force, no vDVZ discontinuity)
 - Fixes and protects the value of the CC/vacuum energy
 - Attractive solution to the CC problems!
 - However the singly-coupled version does not have non-trivial cosmologies
 - ✓ This doubly-coupled bimetric theory results in a natural candidate PM gravity with viable cosmology
 - Remains to be seen: is this really partially massless?
 - All backgrounds? Fully non-linear symmetry?

Avoids instabilities?

- ullet At early times, on finite branch, y -> β/α rather than 0
- Instability in singly-coupled theory occurred at small y
- Can double coupling exorcise the instability?

Are massive cosmologies viable?

- A single massive graviton (dRGT massive gravity) lacks flat FRW solutions (and open solutions are unstable)
- 4 1408.1678: double coupling can cure this!
- ARS, Enander, Akrami, Koivisto, Könnig, and Mörtsell [arXiv:1409.xxxx]:
 - That conclusion relies on existence of a scalar rolling down a nontrivial potential.
 - Cosmologies dominated by dust and other w=const. fluids still do not exist
 - Are these ruled out? Either way, very strange cosmologies!

Summary

- Sensible theory exists of massive gravitons and interacting spin-2 fields
- Late-time acceleration can be addressed (self-acceleration)
- Dynamical dark energy serious competitor to Λ CDM!
- Clear non-GR signatures in large-scale structure: Euclid
- Can couple both metrics to matter: truly bimetric gravity
- Exciting cosmological implications: exact ΛCDM, partial masslessness, etc.
- Can we do cosmology with a single massive graviton?

Bicollaborators:

Oslo:

Yashar Akrami Phil Bull

Heidelberg:

Luca Amendola Frank Könnig

Madrid:

Domenico Sapone

Based on: arXiv:1404.4061

arXiv:1407.4331

arXiv:1409.xxxx

arXiv:1409.xxxx

Stockholm/Nordita:

Jonas Enander Tomi Koivisto Edvard Mörtsell

Geneva:

Mariele Motta

What's next?

- Singly-coupled bigravity:
 - Forecasts for Euclid
 - Superhorizon scales: CMB (Boltzmann + ISW), inflation, tensor modes
 - Nonlinear regime (N-body simulations)
 - Inflation from bigravity
- Doubly-coupled bigravity:
 - Cosmological constraints (subhorizon, superhorizon, nonlinear)
 - Statistical analysis against background data (SNe, CMB, BAO)
 - Linear stability
 - Local constraints
- Doubly-coupled massive gravity:
 - Solution is the second sensible?

Subhorizon evolution equations g metric

Energy constraint (0-0 Einstein equation):

$$\left(\frac{k}{a}\right)^{2} \left(A_{g} + \frac{m^{2}}{2}yPa^{2}(B_{f} - B_{g})\right) + \frac{3}{2}m^{2}yP\left(A_{g} - A_{f}\right) = \frac{\bar{\rho}}{M_{g}^{2}}\delta$$

Trace i-j Einstein equation:

$$\left(\mathcal{H}' - \mathcal{H}^2 + \frac{a^2 \bar{\rho}}{2M_g^2}\right) E_g + m^2 a^2 \left[\frac{1}{2} x P \left(E_f - E_g\right) + y Q \left(A_f - A_g\right)\right] = 0$$

Off-diagonal (traceless) i-j Einstein equation:

$$A_q + E_q + m^2 a^2 y Q(B_f - B_q) = 0$$

Subhorizon evolution equations f metric

Energy constraint (0-0 Einstein equation):

$$\left(\frac{k}{a}\right)^{2} \left(A_{f} - \frac{m^{2}}{2} \frac{Pa^{2}}{y} (B_{f} - B_{g})\right) + \frac{3m^{2}}{2} \frac{P}{y} (A_{f} - A_{g}) = 0$$

$$\left[-K' + \left(H + \frac{x'}{x} \right) K \right] E_f + m^2 \frac{a^2 x}{y^2} \left[\frac{1}{2} P \left(E_f - E_g \right) + Q \left(A_f - A_g \right) \right] = 0$$

Off-diagonal (traceless) i-j Einstein equation:

$$A_f + E_f - m^2 \frac{Qa^2}{r} (B_f - B_g) = 0$$