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Cosmic microwave background

. Early universe: hot dense proton-electron plasma
ame Big Bang Tewp

Snd of Lsitsiy g

(Hydrogen) recombination:
pte” — H
- Universe becomes transparent
Last Scattering 000 (T" ~ 3000 K), photons are no longer
coupled to plasma and freestream

These photons are at microwave frequencies
today (T ~ 2.7 K, v ~ 10> GHz)

where we observe them as the CMB

Statistics of the CMB can be both predicted
and measured with great accuracy

PRESENT



Microwave sky

Monopole: perfect blackbody,
Tevp = 2.726 K

Dipole: velocity of earth relative to
average velocity of Hubble volume,

AT ~3 mK

Anisotropy: Gaussian random fluctuations,
AT ~ 100 uK

“Snapshot of early universe”




CMB power spectrum

Power spectrum: average power in CMB temperature anisotropy as a function

of wavenumber £
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CMB power spectrum: example of phenomenology

Angular scale of acoustic peaks:

D* «— Angular diameter distance to recombination
g «— Sound horizon at recombination
*
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Why is the CMB polarized?

Polarization is generated by Thomson scattering

e vy—e

Local temperature quadrupole
=> linear polarization

Only generated in transition between
tightly coupled and freestreaming regimes

Polarization is a weaker signal than
temperature (6 uK vs 100 uK)

Quadrupole
Anisotropy
S+
4
Thomson
» Scattering
o
£
€
Linear
Polarization

Hu & White



CMB polarization: E-B decomposition

Represent CMB polarization on sky by
traceless symmetric tensor:

) |
oy = (B, Ep) — §<\E!2>9ab

E-modes: “gradient-like” field

1

gy = (vavb — §gabv2> ¢

B-modes: “curl-like” field

1 1
Hab — <2€acvcvb + QEbCVCva) ¢

This is the analog of the gradient/curl decomposition for a vector field



CMB polarization: power spectra
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“Beyond the power spectrum”

So far, we have only discussed the power spectrum (or equivalently, the
2-point correlation function) of the CMB

For a Gaussian field, the 2-point function contains all the information

To a good approximation, the CMB is a Gaussian field,
but there are weak non-Gaussian signals that can be “excavated”.

1. What non-Gaussian signals should we look for?

2. What higher-point statistics should we use to look for each signal?



Outline

1. Secondary non-Gaussianity: gravitational lensing
how are the statistics of the CMB affected?
what cosmological information is added?

2. Secondary non-Gaussianity: reionization
a new statistic which isolates the epoch of patchy reionization

3. Primordial non-Gaussianity
what signals can one look for?
new results from WMAP (first optimal analysis)



Part 1: CMB lensing

CMB photons are deflected by gravitational potentials between last scattering and
observer. This remaps the CMB while preserving surface brightness:

AT(R) — AT(f + d(R))
where d(n) is a vector field giving the deflection angle along line of sight
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CMB lensing: theory

To first order, the deflection field d(n)
1s a pure gradient:

d.(n) = Va¢(n)

where the lensing potential 1s given by the line-of-sight integral Antony Lewis

¢(n) = —2 /OX* dx (u) W (xm, 1o — X)

XX *

Redshift kernel: broad peak at z ~ 2
RMS deflection: ~2.5 arcmin, coherent on degree scales (1 ~ 100)

CMB acquires sensitivity to new parameters (€.g. neutrino mass)



CMB lensing: power spectrum

1(1+1)/(2m)C, (uK)?

1(1+1)/(2n) AC, (uK)?
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Gravitational lensing appears in
temperature and polarization, but
polarization is more sensitive

B-mode polarization is generated
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CMB lens reconstruction: idea
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Idea: from observed CMB, reconstruct deflection angles (Hu 2001)
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CMB lens reconstruction: quadratic estimator

Lensing potential weakly correlates Fourier modes with 1 # 1’
(TMTA)) oc [-1- 1 =1)]p(l-T)

Formally: can define estimator »(1) which is quadratic in CMB temperature:

o0 [ G010 + 0 b)CL T G =1-1)

1

Lensed CMB Reconstruction + noise

Intuitively: use hot and cold spots of CMB as local probes of lensing potential
(analagous to cosmic shear: galaxy ellipticities are used as probes)



CMB lens reconstruction: higher-point statistics

Lens reconstruction naturally leads to higher-point statistics

- C/"’” | |
e.g. take CMB temperature 1'(n) O v e £ 0

S NP (Ap =1 K, B =1")

— @(1)  (apply quadratic estimator) ,
— af@ (take power spectrum) =

defines 4-point estimator in the CMB

10 102 103

Or: take CMB temperature 7'(n), galaxy counts g(n)  Smithetal, 0811.3916
— S/Q\(l) (apply quadratic estimator)
— CZOQ (take cross power spectrum)

Defines (2+1)-point estimator in the (CMB,galaxy) fields

Can think of the lensing signal formally as a contribution to the 3-point
or 4-point function, but lens reconstruction is more intuitive



CMB lensing: lens reconstruction vs power spectrum

Consider two methods for extracting CMB lensing signal:

1. measure CMB power spectra CET7 CZE, CEE7 CEBB
lensing makes some contribution, unlensed spectra act as “noise”
2. measure power spectrum C¢¢ of lens potential (4 point in CMB)
within reconstruction noise (power spectrum N

?)

Second method has better signal-to-noise and is more flexible

10

e.g. CMB lensing detection in WMAP3:
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NVSS: NRAO VLA SKky Survey

1.4 GHz source catalog, 50% complete at 2.5 mJy

Mostly extragalactic sources:
AGN-powered radio galaxies
Quasars
Star-forming galaxies

Well-suited for cross-correlating to WMAP lensing potential:
Nearly full sky coverage (fsxy = 0.8)
Low shot noise (Nga1 = 1.8 x 10°)
High median redshift ~ (Zmedian = 0.9)



WMAP3-NVSS result with systematic errors

Beam Galactic Point source + SZ
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CMB lens reconstruction: future prospects

Cf¢ s sensitive to late-universe observables such as:

neutrino mass

—e Ap =1 pK — aremin
oo Ap =4 puK — arcmin
o o Ap=06pK — arcmin

Hpwinvlaremin)

(forecasts for an all-sky polarization satellite)

dark energy equation of state

—e Ap =1 K — arcmin
oo Ap =4 pul —arcmin
o o Ap =06 pul — arcnmin
.
o
-
Hpwin(arcmin)

curvature
o—e Ap =1 K — arcmin
oo A\p =k —~ aremin
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.
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Smith et al, 0811.3916

Need high-resolution CMB measurements: many experiments on horizon
(SPT, ACT, Planck, Polarbear...)

Probes large angular scales at high redshift (e.g. early dark energy)



Outline

1. Secondary non-Gaussianity: gravitational lensing
how are the statistics of the CMB affected?
what cosmological information is added?

2. Secondary non-Gaussianity: reionization
a new statistic which isolates the epoch of patchy reionization

3. Primordial non-Gaussianity
what signals can one look for?
new results from WMAP (first optimal analysis)



Part 2: reionization and the CMB

1.0F

] ] ] O.

How does reionization affect the CMB? < os
. . . . o va 0.4
Consider homogenous reionization first ~ 5
. . 0.0k
(i.e., x_e = function of z only) 0 5 10 15 20

Dvorkin & Smith, 0812.1566
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1. Screening: overall amplitude of CMB power spectrum = A e 2"

Creates degeneracy: harder to measure A (tau acts as “nuisance parameter”)
Conversely, if degeneracy can be broken, can constrain reionization

(e.g. WMAPS: 7 = 0.087 £ 0.017)

2. New polarization from Thomson scattering after reionization:
Generates E-mode peak at ¢ ~ 8 (horizon size) that can break degeneracy

3. Doppler effect: contributes to large-scale temperature anisotropy
Mostly cancels along line-of-sight since v = “pure gradient” to lowest order



Reionization and the CMB: patchy reionization

=166l »=1553% =14 10 =13 14 =124

Zahn et al (2005)

Consider a reionization bubble with optical depth 7ub and radial velocity v,
What CMB anisotropy does the bubble generate?

AT(H) = —TbubT(n>
A[Q + ZU](II) = _Tbub(Q =+ ZU)(H)

1. Screening:

(Tbub)\l/_Og Z :|:2Y2m(n)T2m(Z7n)

m=—2

3. kSZ: AT(H) = _Tbub(vr/c)

2. “Thomson”: A(Q =+ iU)(n)



Patchy reconstruction: quadratic estimator?

Idea: if reionization is patchy, the optical depth is a field 7(n), not a constant

Can we write down a quadratic estimator 7A'(l) (“tau reconstruction”)
analogous to the estimator (1) ? (“lens reconstruction”)

Lens reconstruction “works” because lensing generates anisotropy which
looks (heuristically) like () x (unlensed CMB):

Tlensed = Tunlensed + (Vgp) | (VTunlensed) + -
(Q + Z.Uv)lelﬂsed — (Q T Z.Uv)unlensed + (VSO) . V(Q + iU)unlensed -+ ...

Question: Does patchy reionization generate anisotropy of the same form,
with © replaced by 7 ?



Patchy reconstruction: quadratic estimator?

1. Screening effect

Heuristically: amplitude of recombination peaks is modulated by tau
(region of sky with larger tau => lower observed acoustic peaks)

AT(n) = —7(n)T(n)
AlQ+iU|n) = —7n)(Q+iU)(n)

Anisotropy generated by the screening effect has form (7 ) x (unlensed CMB)
=> screening effect is “captured” by quadratic estimator formalism



Patchy reconstruction: quadratic estimator?

2. Bubble scattering (polarization only)

Heuristically: large-scale E-mode from reionization is modulated by tau
(region of sky with larger tau => larger reionization E-mode)

Generates B-modes, but
much smaller than lensing at
power spectrum level
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Tgm(Z l’l)

Anisotropy generated by Thomson scattering has form (7) x (unlensed CMB)

=> Thomson scattering is “captured” by quadratic

estimator formalism



Patchy reconstruction: quadratic estimator?

3. kSZ (temperature only)

The kSZ anisotropy is a line-of-sight integral:
1 dt
AT(n)=—— [ dz—uv,(z,n
)=~ [ d2 o (zm)

kSZ from reionization contributes to the
small-scale temperature power spectrum

C1(1+1)/(2m)

/ thermal SZ 45 gy,

Zahn et al (2005)

Anisotropy generated by kSZ does not have form (7) x (unlensed CMB)
=> kSZ is not “captured” by quadratic estimator formalism



Patchy reionization: Quadratic estimator

Conclusion: screening and polarized Thomson effects can be used to
construct a quadratic estimator for 7(n) (math is the same as lens
reconstruction, but with different I-weighting)

From here, one can construct estimators as in the lensing case:

7(1) = (2-point in CMB fields T,E,B)
@T T = (4-point in CMB fields)
C7X = ((2+1)-point in CMB + cross-correlation field X)

4x10-5

Crm 1(1+1) /(2m)

—-2x10-%
0 500 1000 1500 2000

Dvdrkin & Smith, 0812.1566



Quadratic estimator: exaggerated example

0021 EE— 0005

FIG. 5: An exaggerated example of the quadratic estimator 7., defined in §IV assuming the constant quadrupele approximation.
Top row (left to right): the primary E-mode Ey, the response field E, and the Ar-field, onnlwdeg’pau:hohky For visual
purpeses, the Ar-field has been multiplied by a Gaussian window function, and we have artificially increased the signal-to-noise
of the reconstruction by omitting the lensed B-mode and assuming cosmic variance limited measurements to £, = 2000. Note
that £: = —Ej on small scales, while the E;-field has power added at large scales. Bottom row (left to right): the E-mode and
B-mode components of the total observed polarization (Eq. (31)), and the quadratic reconstruction 7y,,. Note that B-modes
appear where there are v fluctuations. In this figure, the units of the E-mode and B-mode polarization fields are in p¥X and
Ar is dimensionless.

Dvorkin & Smith, 0812.1566



Quadratic estimator: signal-to-noise
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Ideas for improving the signal-to-noise:
1. cross-correlate with other tracers of reionization
2. combine with lens reconstruction to jointly solve for tau and phi



Parameter forecasts in a toy reionization model

Two observables: Amplitude of the power spectrum is determined by

dz 1+z) (s
A= / o 2L~ we(e)

Location of peak is determined by the typical bubble radius R
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Dvorkin & Smith, 0812.1566

A high-sensitivity satellite experiment can constrain both at the ~10% level



Reionization and the CMB: conclusion

Two methods for extracting reionization information from the CMB:
1. kSZ from small-scale power spectrum
2. quadratic estimator T

Complementary strengths and weaknesses:

1. “sees” kSZ, but not screening or bubble scattering

experimental sensitivity already exists (SPT/ACT)
probes reionization on small scales (2000 < ¢ < 4000)
power is mixed with other secondaries, modeling uncertainty

2. “sees” screening and bubble scattering, but not kSZ
more futuristic, requires low-noise polarization
probes tau fluctuations on large scales (f — Dreionization/Rbubble ~ 400)
isolates patchy signal, map can be cross-correlated, or used for “de-ionizing”

Unsolved problem: find statistic to isolate the kSZ signal in temperature!



Outline

1. Secondary non-Gaussianity: gravitational lensing
how are the statistics of the CMB affected?
what cosmological information is added?

2. Secondary non-Gaussianity: reionization
a new statistic which isolates the epoch of patchy reionization

3. Primordial non-Gaussianity
what signals can one look for?
new results from WMAP (first optimal analysis)



Part 3: Primordial non-Gaussianity

In “vanilla” models of inflation, the initial fluctuations are Gaussian
The 3-point correlation function function is zero:

(C(k1)C(k2)C(k3)) =0

However, more exotic models can predict nonzero three-point functions
“Local” shape: e.g. curvaton model

((z) = Ca(z) + [T Ca()?
(C(k1)C (k)¢ (k3)) ~ 5 (k31k3 + symm) 53 (Zk >

|H

“Equilateral” shape: higher-derivative interactions, DBI inflation

(Clh)C (k)¢ (Ra)) ~ N (H mtete s 27“") (3 ki)

i=1 (




Are these the only shapes to look for?

Effective field theory of inflation (Cheung et al 2007):

(0;m)?

. ¢ ) ) 3.7 )2
S = / d'zy/—g EM&R - M3H (7’1’2 - — ) + 2M; (frz 48— 5 10T

a’

4 ...
v ) — §M317r" - } .(28)

The two cubic operators do not generate 3-point functions which are precisely equal:

A(klv k27 kS)
kiksksky

n 12 — B«
klkgkgk?

kP — ke | Y kikj | — 3kikoks
1<J

ki = k1 + ko + k3
A(ky, ko, k) = (ky — 2k1) (ky — 2k2) (k¢ — 2ks)

Can orthogonalize the family of bispectra parameterized by «



A new “folded” shape

Consider correlation coefficient with equilateral shape, as function of «:

10

05

05 F

Senatore, Smith and Zaldarriaga (to appear)

There is a “window” at v = 5.1 where a new shape appears

Local shape: “squeezed” triangles (/; «< (s, /) contain the signal-to-noise
Equilateral shape: equilateral triangles (¢ ~ /5 ~~ ¥5)
Folded shape: “folded triangles” ({1 4 /5) = {3

Analysis in WMAPS5 forthcoming



More general shape analysis?

Power spectrum analogue: one could either
1. estimate C_I'sin I-bins
2. estimate P(k) in k-bands
3. estimate inflationary parameters (n_s, running, ....)

Bispectrum: analogously, one could either:
1. estimate b_{I1,12,13}in | bins
2. estimate F(k1,k2,k3) in k bins
3. estimate fnl parameters

So far, only #3 has been performed on WMAP data,
but #1+2 would be possible using our machinery

.... Is there a good theoretical motivation for doing this?



Three-point function in the observed CMB

Non-gaussian initial conditions from inflation
+ linear transfer functions = non-Gaussian CMB

ocal — ecal — 3000

,,,,,

-0.17€-03 I +0.17E-03 -0,176-03 M +0.17E-03

Michele Liguori

Optimal estimator: sum over triples (11,12,13) with inverse signal-to-noise weighting

(T(1)T(1)T(l3)) x fnrd? Zz



WMAP analysis: background

jl\c;zal =32+ 34 Creminelli et al (WMAP3)

local
NL = 87 = 30 Yadav & Wandelt (WMAP3!!)

local
]\(;za = 90 30 Komatsu et al (WMAP5)

A robust detection would rule out most models of inflation! (e.g. slow-roll)
Which analysis should be believed?



Reason for the discrepancy: “step” at 1=450

A i aamatasasasasasiates: aes Q-band
- T __ 1 (40 GHz)
ol L_é Wl i ﬁ V-band

44 A TA 1 (60 GHZ)
- E | W-band
a | (90 GHz)

);i;dav & Wandelt (2007)
Must be careful to avoid making a posteriori choices.... !

Use of V+W is motivated a priori
Use of Imax=750 is not



Problem: have estimates of fnl with different values but comparable statistical errors

General principle: in this situation, either
1. have evidence for systematics
2. estimator is significantly suboptimal

e.g. f]l\(;zal = 32+ 34 (Creminelli et al, WMAP3, Imax=350)

local _ g7 1 30 (Yadav & Wandelt, WMAP3, Imax=750)

Is this shift between ¢, = 350 and /¢ — 750 consistent with statistics?

max

If so, one should be able to reweight the estimator so that adding the small scales

improves o (fx2$*!) by more than 4

Questions:
1. Are the large and small scales consistent? (i.e. do they give a consistent f}\?zal?)
2. Are WMAP3 and WMAP5 consistent?



Optimal estimator

V+W

*

*

Block preconditioner

Nside = 512 = Niige = 512 = Nsige = 256 => Niide = 128 = fspm = 60

Limax = 1000 £32x = 1000 63 = 400 £33 = 200
€y =1073 €2) = 0.1 €3 = 0.1

FIG. 20: Preconditioner chain for multigrid (S 4+ N)~' filtering, using noise maps from the three-year WMAP dataset. From
left to right, each set of maps represents one conjugate gradient inversion problem, which is preconditioned by the “faster and
cruder” approximation which appears next in the chain, obtained by either reducing resolution or the number of distinct beams
retained in the problem.

Motivation for optimal estimator:

1. smaller error bars (o ( f12$*) = 21 for WMAPS)
2. eliminate arbitrary choices: different implementations should agree precisely
3. cannot get multiple estimates with comparable errors;

get single “bottom line” estimate for a given dataset



Results: WMAPS optimal analysis

400

(20 errors shown)

200

OVM_WW+1+H+mw

=2 =200

fi (cumulative)

—400

= = optimal, foreground-marginalized
A 4 suboptimal, clean-map

Smith, Senatore and Zaldarriaga (to appear)

WMAPS5 suboptimal: —11 < [25% < 121 (95% CIL)
WMAPS5 optimal: —4 < fi2% < 80 (95% CL)

+SDSS (Slosar et al 2008): —1 < fio¢ < 61 (95% CL)
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Results: are the large and small scales consistent?
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Quantify this by defining:
AfnL = FnpUmax = 750) — Fnr (£max = 350)

In simulation: Afyz, =19 (at 1o)

In WMAP3, we find:

Afnr =20 (optimal estimator)
Afnr =32 (suboptimal)

some disagreement w/Yadav-Wandelt (2007):
Afnr = 52

In WMAPS5, we find:
Afyr =9  (optimal estimator)
Afyr =16 (suboptimal)

with good agreement with Komatsu (2008)

Smith, Senatore dhd Zaldarriaga (to appear)



Results: are WMAP3 and WMAPS5 consistent?
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Smith, Senatore and Zaldarriaga (to appear)

Deﬁne: AfNL = J/C\NL (WMAP5) — J/C\NL (WMAPB)
We find: Afnve =—-20  (optimal estimator)
Afnr = =25 (suboptimal)

In simulation: Afy, =16 (at 10), so WMAP3 and WMAPS are consistent



Speculation: what about the high significance in WMAP3?

Yadav & Wandelt (2007): 2.9 sigma, fios*! = 87

Our pipeline: 2.3 sigma, fnT flocal — g9 (suboptimal estimator)
2.5 sigma, Alocal =56 (optimal)

Probability of a 2.5 sigma result by chance: 1.25%
Can we really “dismiss” the high significance in seen WMAP3?

How many equally “interesting” parameters could we have looked for?
local prequilateral
NL S N 7w, K, (dng/dInk), ag, a_q

In addition, might have found something in WMAP1-only, or in WMAP5-only....

Now consider: what happens when we add more data?
We have flocal — 56 in WMAP3
Suppose flocal is really 56; then we expect to get /5% ~ 56 in WMAP5
Suppose WMAP3 is statistical fluke; then we expect a shift toward zero....



Primordial non-Gaussianity: systematic tests
- large-scale foregrounds: fx$* ~ few (conservative galactic mask, after cleaning)
- small-scale foregrounds: negligible
- point sources: negligible
- three-point function from secondaries: fr5* ~ few (largest: ISW-lensing)

Primordial non-Gaussianity: conclusions
- Systematics seem completely under control!
- First implementation of optimal estimator: reduces o(f¢*!) from 30 to 21
- Eliminates arbitrary choices which complicate interpretation of results
- We currently find f12$* just under 2 sigma

—4 < fesl < 81 (WMAPS)
—1 < fR¢ ocal _ (WMAP5+Sloan)



