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OutlineOutline

�� CMB polarization and inflationCMB polarization and inflation

�� Neutrino masses and chemical potentialsNeutrino masses and chemical potentials

�� Cosmological BirefringenceCosmological Birefringence

�� The SZ effect and neutrino massesThe SZ effect and neutrino masses

�� The SZ effect as a means to measure The SZ effect as a means to measure T(zT(z))
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CMB Polarization and InflationCMB Polarization and Inflation
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EE--Mode vs. BMode vs. B--mode Polarizationmode Polarization

Density perturbations 
(scalar modes)

Gravitational waves 
(tensor modes)

ParityParity--eveneven ParityParity--oddodd
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CMB CMB LensingLensing by the LSSby the LSS

B-mode generated by gravitational 
waves and ‘contaminated’ by 
gravitational lensing
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Scalar vs. Tensor PerturbationsScalar vs. Tensor Perturbations
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Neutrino Masses and Chemical Neutrino Masses and Chemical 

PotentialsPotentials

�� If neutrinos are relativistic at recombination they If neutrinos are relativistic at recombination they 

may imprint on the CMB temperature may imprint on the CMB temperature 

anisotropy through the Integrated Sachs Wolfe anisotropy through the Integrated Sachs Wolfe 

effect effect 
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Damping at the Era of Structure Damping at the Era of Structure 

FormationFormation
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Neutrino OscillationsNeutrino Oscillations
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Lepton AsymmetryLepton Asymmetry
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Flow Chart of BBN+CMBFlow Chart of BBN+CMB
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Degeneracy Parameter: 

Impact on Power Spectra

PolarizationTemperature

Lensing Angle
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2D Likelihoods for Planck2D Likelihoods for Planck
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Limits on Neutrino Parameters from PLANCKLimits on Neutrino Parameters from PLANCK
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Cosmological BirefringenceCosmological Birefringence

B   E   T

B   E   T
primordial universe is primordial universe is 

parity parity -- even (?)    TB=0=EB even (?)    TB=0=EB 
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Parity Violating InteractionsParity Violating Interactions
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Rotation of Polarization PlaneRotation of Polarization Plane
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SZ Effect and Neutrino MassesSZ Effect and Neutrino Masses

�� CMB CMB comptonizationcomptonization by galaxy clustersby galaxy clusters

�� Independent of Independent of redshiftredshift

�� Dominates the power spectrum on small Dominates the power spectrum on small 

scalesscales
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SZ Power SpectrumSZ Power Spectrum
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Tegmark (2005)

SZ

Cluster abundance, 
correlation function
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Neutrino Masses from Cluster Neutrino Masses from Cluster 

Correlations and Number CountsCorrelations and Number Counts

�� SPT (10% sky coverage) will set upper SPT (10% sky coverage) will set upper 

bound on total neutrino mass of bound on total neutrino mass of 

1.1 1.1 eVeV (from correlation function alone)(from correlation function alone)

�� Adding number counts tightens this limit to Adding number counts tightens this limit to 

0.72 0.72 eVeV

�� DUO+ SPT+LSST+PLANCK will DUO+ SPT+LSST+PLANCK will 

presumably constrain total mass down to presumably constrain total mass down to 

0.034 0.034 eVeV
Wang et al. (2005)Wang et al. (2005)
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SZ Power Spectrum with Massive SZ Power Spectrum with Massive 

NeutrinosNeutrinos

Sadeh, Shimon & 
Rephaeli (2009), 
in prep.
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NonNon--Standard CMB Temperature Standard CMB Temperature 

Scaling and the SZ EffectScaling and the SZ Effect
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�� NonNon--standard evolution, i.e. nonstandard evolution, i.e. non--adiabatic adiabatic 

evolution, will result is departure from the evolution, will result is departure from the 

standard scaling, e.g.standard scaling, e.g.

�� From a sample of 13 clustersFrom a sample of 13 clusters
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0 )1()( zTzT αν )1()/( zxkThx +→=

CL) (68% 10.0≤α

FabbriFabbri, , MelchiorriMelchiorri & & NataleNatale (1978)(1978)

RephaeliRephaeli (1980)(1980)

LuzziLuzzi et al. (2009), et al. (2009), 

in prep.in prep.
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�� Forecasted upper limits for PLANCKForecasted upper limits for PLANCK and ACTand ACT    

Shimon & Shimon & RephaeliRephaeli (2009), (2009), 

in prep.in prep.
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Summary ISummary I

�� Energy scale of Energy scale of inflationinflation

�� LSS probes: trace the LSS and neutrino LSS probes: trace the LSS and neutrino 

masses + chemical potentials via the masses + chemical potentials via the 

effect of neutrino diffusioneffect of neutrino diffusion

�� Chemical potentials: rule out or constrain Chemical potentials: rule out or constrain 

scenarios of scenarios of Lepton AsymmetryLepton Asymmetry ??

�� Cosmological BirefringenceCosmological Birefringence: constraining : constraining 

quintessencequintessence and and axionaxion models with CMBmodels with CMB
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Summary IISummary II

�� SZ is likely to improve on neutrino mass SZ is likely to improve on neutrino mass 

constraints from standard number counts constraints from standard number counts 

and correlationand correlation

�� NonNon--standard temperature scalingstandard temperature scaling

can be constrained with SZ spectrumcan be constrained with SZ spectrum
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RealReal--world effects (such as astrophysical world effects (such as astrophysical 

foregrounds, beam foregrounds, beam systematicssystematics, etc.) may , etc.) may 

compromise this science and a compromise this science and a 

considerable effort is being made to considerable effort is being made to 

optimize our experiments: dataoptimize our experiments: data--analysis analysis 

techniques, foreground removal, beam techniques, foreground removal, beam 

systematicssystematics, etc, towards meeting the , etc, towards meeting the 

challenging requirements of Bchallenging requirements of B--mode mode 

detection and finedetection and fine--scale anisotropyscale anisotropy……


