Probing Dark Energy with the

Canadian Hydrogen Intensity Mapping Experiment

A ZKO JK

Richard Shaw

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

Outline

- Dark Energy, BAOs and Intensity Mapping
- Current and future experiments
- CHIME
- Data analysis/Foreground removal

Accelerating Universe

Luminosity distance $D_L = (L/4\pi F)^{1/2}$

Riess et al. 2007

Baryon Acoustic Oscillations

CMB angular power spectrum

- Sounds waves
 propagating in the early
 Universe. Leave acoustic
 peaks in the CMB
- Weaker imprint left in the matter distribution
- Gives a standard (statistical) ruler

Baryon Acoustic Oscillations

Potentially 21cm could extend this to higher redshifts

Anderson et al. 2012, http://arxiv.org/pdf/1105.2862

21cm Intensity Mapping

- 21cm line is the transition between parallel and antiparallel spins of neutral Hydrogen
- The ratio between the two occupancies determines the spin temperature T_S (~ gas temperature)

$$n_1/n_0 = (g_1/g_0) \exp(-T_*/T_S)$$

• We can observe the contrast relative to the CMB

$$\Delta T = 23.8 \left(\frac{1+z}{10}\right)^{1/2} \left[1 - \bar{x}(1+\delta_x)\right] (1+\delta_b)(1-\delta_v) \left[\frac{T_S - T_\gamma}{T_S}\right] \,\mathrm{mK}$$

Hydrogen in the Universe

z = 1100Dark ages z = 20 Reionisation HI in galaxies

Djorgovski et al. (Caltech)

Galaxy Redshift Survey

- Detect all galaxies with high significance.
- Take spectra to determine redshift

Only interested in large scales

Intensity Mapping

- Observe galaxies with a line transition
- Automatically gives redshift

Don't need to resolve individual galaxies

Chang et al, 2008; Wyithe and Loeb 2008

21cm Intensity Mapping

- In 21cm the frequency gives the redshift.
- Observe the diffuse emission from many unresolved galaxies
- Changes the game in telescope design:
 - Previously: large field of view, large collecting area, large angular resolution (SKA?)
 - Now: large field of view, large collecting area, modest angular resolution (compact arrays, single dishes).

Foreground Challenges

Cosmological 21cm Signal ~ 1mK

Foreground Challenges

Galaxy: up to 700K

A way out?

Issue 2: Polarised Foregrounds

- Synchrotron is highly polarised (fraction ~0.5)
- Faraday rotation changes polarisation angle with frequency $\sim {
 m RM} \; \lambda^2$
- Galactic emission at different Faraday depths give multiple modes.
- Extent of problem unknown, expected to be worst at intermediate frequencies

Intensity Mapping at Green Bank

Intensity Mapping with GBT

- Collaboration: CITA, CMU,
 NRAO, UWisc, NAOC, ASIAA
- 100m telescope (15' resolution)
- 700-900 MHz (z ~ 0.6 1)
- 190 hours observation
- 41 sq deg

Cross correlation detection

- Correlation with DEEP2 Galaxy survey by Chang et al.
 (2010) avoids foreground problem!
- Updated using WiggleZ survey (Masui et al. 2012)

The Future?

- Work at GBT will continue with the aim of measuring the 21cm *autocorrelation*.
- However, observations like this are slow. To survey the whole sky to this depth ~ 20 years
 - Is there a better way to do this?

Next Generation Experiments

Requirements: Resolution

- Don't need to resolve individual galaxies, but do need sufficient resolution to resolve BAO peak ~ 10 arcmin
- For z~1-3 requires 100m radio telescope (with ~1 MHz freq resolution)

$$\Delta \theta \sim \frac{\lambda}{D}$$

Focal Plane Array

- Slightly offset feeds
- Each beam noise: σ_T
- 4x faster survey

Interferometers

Interferometers

• Complex correlation of two feeds

$$R = \int d^2 \hat{\mathbf{n}} A^2(\hat{\mathbf{n}}) e^{2\pi i \hat{\mathbf{n}} \cdot \mathbf{u}} I(\hat{\mathbf{n}})$$

advancing

baseline

- For small parts of sky this is 2d Fourier mode $R = \int dl \, dm \, A^2(l,m) \, e^{2\pi i (ul+vm)} \, I(l,m)$
- Imaging: inverse Fourier transform and deconvolution (*on flat sky*)

Interferometers

- Traditionally interferometers emphasized high resolution observations of small fields
- We can turn them into high speed survey instruments.
- We need maximal sensitivity to large scales. Means measuring smallest fourier modes (hence many short baselines)

 Measure fourier modes in redbox (primary beam)

 Measure fourier modes in redbox (primary beam)

 Linear combinations give independent beams

- Each beam has noise
- •4x faster, with same noise and resolution

•	•	•	•	•
٠	٠	٠	٠	•
٠	٠	٠	٠	•
•	•	•	•	•
•	•	•	•	•

25x faster

Survey Interferometers

- A cheap, scalable way of building large collecting area and angular resolution
- FoV (primary beam) given by size of individual elements
- Resolution determined by total size of array
- Survey speed proportional to $N_{\rm feeds}$

NRC CNRC

UNIVERSITY OF

-

CHIME Overview

- Located at DRAO in BC
- Transit radio interferometer
 - Observe between 400-800 MHz
 - 0.4 MHz spectral resolution
 - 1024 dual pol antennas ($T_{recv} = 50K$)
- 120 x 2 degree FoV
- 4x256 beams = 15 arcmin resolution

CHIME Overview

- Science Goals
 - Intensity mapping for BAOs
 - Pulsar observations
 - Radio transients

BAO Forecasts

BAO Forecasts

CHIME Pathfinder

Deconvolved Map

711 MHz

Data Analysis with the m-mode formalism

Data Analysis

- Analysis is challenging:
 - Wide field at given instant (~ 120 x 2 degrees)
 - Effectively an all sky survey $(3\pi sr)$
 - Data volume (>~ 1 TB/day for pathfinder)
 - Polarisation leakage
 - Foreground removal (> 10⁶ times brighter)

m-mode transform

- Developed *m*-mode formalism
 - Transit telescopes only (stationary noise)
 - Naturally full sky, wide-field, and *exact* (no UV plane)
 - Breaks problem into statistically independent modes (efficient)
 - Simple linear mapping per mode
 - Published in arXiv:1302.0327; arXiv:1401.2095
- Enables an efficient cleaning of foregrounds:
 - Use covariance of data to find a statistical separation (KL Transform/SN eigenmodes)
 - Fully treats mode mixing effects

Foreground Cleaning

Foregrounds 10⁶ times larger than signal

Foreground Cleaning

Foreground residuals significantly smaller than signal

2D Power spectrum Estimation

Warning: Growth Rate

- Can use redshift space distortions to get access to the growth index $f=\Omega_m^\gamma$
- Problem: we have no direct measurement of the 21cm brightness temperature

$$P_{21}(\mathbf{k}) = \bar{T}_b^2 (b + f\mu^2)^2 P(k)$$

 Intensity mapping can only measure degenerate combinations:

 $f/b \qquad \bar{T}_b f \sigma_8$

• Can we learn these any other way? Sims, global sky experiments, 21cm galaxy surveys?

Warning: large scale IM correlation

- Ultra-large scales are a promising regime for tests of gravity (Baker et al., Alonso et al.)
- Use multiple tracers to avoid sample variance (McDonald and Seljak 2009)
- Foregrounds are a huge barrier
 - Cleaning removes the 21 cm signal
 - Without cleaning we get enhanced noise (but not bias)

$$\operatorname{Var}\left(C_{\ell}^{g,21+fg}\right) = \frac{1}{N}C_{\ell}^{g}C_{\ell}^{21+fg}$$

IM-CMB lensing, IM-CIB similar problems

- 21cm Intensity Mapping is a promising technique for mapping the Universe and measuring BAOs foregrounds are challenging
- CHIME Pathfinder is operating, full instrument construction finishing in 2017
- Analysis is fun! Polarised radio sky simulation and 21cm data analysis code all available at:

http://github.com/radiocosmology/