ACCRETION MODELS FOR BLACK HOLE EVOLUTION

Francesco Shankar

In collaboration with:

D. H. Weinberg J. Miralda-Escude'

Massive Dark Objects \rightarrow observed in all bulged-galaxies \rightarrow strong link with the host spheroid M/n/ σ

Dunlop & McLure; Ferrarese et al.; Gebhardt et al.; Graham et al.; Haring & Rix; Lauer et al.; Magorrian et al.; Marconi & Hunt

 $\sigma = k \times V_c$

 $V_{C}+DM$ profile \rightarrow $V_{VIR}(z_{vir}=0) \propto (M_{vir})^{1/3}$

What are MDOs? How and why are they connected with spheroids and DM? What is their role in shaping galaxies?

On the other hand SAM are working hard understanding what is going on...

Malbon et al.

Fontanot et al.

``our knowledge on the physics of accretion onto BHs and their interaction with galaxies is still poor to draw firm conclusions"

GOAL:

EMPIRICALLY CONSTRAIN BLACK HOLE EVOLUTION IN A STATISTICAL SENSE

WHAT I AM GOING TO SHOW ACCRETION WITH SINGLE MODES (one ε , one $\lambda = L/L_{Edd}$) GOOD BUT NOT ENOUGH BAD MATCH WITH: -SMALL SCALE CLUSTERING -AGN FRACTION ACCRETION WITH MULTIPLE MODES (one ε , many λ) BETTER BUT STILL NOT ENOUGH MASS AND REDSHIFT DEPENDENCE of λ

CAN FIT ALL THE DATA

AGNs and the LOCAL BH MASS FUNCTION

SMBH from Merging/Dark Accretion or through Visible Accretion detected in the AGN luminosity Functions?

Soltan argument

$$L_{Bol} = L \times K_{Bol} = \varepsilon \dot{M}_{ACC} c^{2}$$

$$\dot{M}_{BH} = (1 - \varepsilon) \dot{M}_{ACC} \qquad \text{Single object}$$

$$\rho_{total} = K_{Bol} \int_{0}^{z_{\text{max}}} dz \frac{dt}{dz} \int_{L_{\min}}^{L_{\max}} \frac{(1 - \varepsilon)L}{\varepsilon c^{2}} \phi(L, z) dL$$

$$n(S, z) dS dz = \phi(L, z) dL \frac{dV}{dz} dz \left[S = \frac{L}{4\pi D_{L}^{2}} \right]$$

$$dV = (D_{A}^{2} c dt) (1 + z)^{3} \qquad \frac{D_{L}}{D_{A}} = (1 + z)^{2}$$

$$\rho_{total} = \frac{K_{Bol}(1-\varepsilon)}{\varepsilon c^2} \int_0^{z_{max}} dz \ (1+z) \int_{S_{min}}^{S_{max}} \frac{4\pi}{c} n(S,z) S \ dS$$

independent of cosm. par. but very dependent on the K_{bal}/ ratio!

The ratio <M_{BH}/M_{STAR}> probably was nearly constant at all times at least up to z~1.5

Varying the Reference Model...

Broad Eddington ratio Distributions I

Broad Eddington ratio Distributions II

SO FAR WE HAVE CONSIDERED MODELS WITH <u>CONSTANT</u> EDDINGTON RATIO DISTRIBUTIONS

Broad Distributions III: The Obscured Fraction

Babic et al.; Tozzi et al.; Alexander et al.

THÉ CLUSTÉRING OF AGNS

MODELING THE z>3 QUASAR CLUSTERING 1-Assuming monotonic relation between BH and Halos $M_{RH} \sim (M_{HALO}) - ---> (M_{HALO}, z) ---> (M_{RH}, z)$ The growth of the halo MF determines the BH growth 2-Assuming ε , λ we know how much energy is radiated and at which L $\Phi(L,z) = -t_{ef} \ln(10) \int \frac{\partial \Phi(M'_{BH},z)}{\partial z} \frac{dz}{dt} \left| \frac{d \log L}{d \log M'_{BH}} \right| d \log M'_{BH}$ $t_{ef} \sim \epsilon / \lambda$ 3-The parameters we use are: ε , λ , α , Σ , γ $M_{BH} = \alpha f(\Omega_m, z) \left(\frac{M}{10^{12} M_{\Theta}}\right)^{1.28} \left(\frac{1+z}{4.1}\right)^{\gamma} \frac{\text{Scatter } \Sigma \text{ weakens}}{\text{the bias}}$

MODELING THE low-z QUASAR CLUSTERING

- 1-The previous method breaks down at low-z: <u>multiple quasars</u> in halos!
- 2-We return to our previous accretion modeling tied to the observed AGN Luminosity Function: BH mass function predicted from <u>continuity equation</u>
- 3-We add the assumption that BH mass is a <u>monotonic</u> <u>function</u> (with scatter) of halo mass or the maximum mass of the subhalo
- 4-<u>Scatter</u> between L and M_{HALO} can come either from scatter in M_{BH} - M_{HALO} or from a broad $p(\lambda,z)$ distribution

5-Add <u>new physical parameter</u> Q=P_s/P_c! Small difference at large scales, significant at small ones

Low-z Clustering: RESULTS

Coil et al.; Croom et al.; da Angela et al.; Francke et al.; Hennawi et al; Mountrichas et al.; Myers et al.; Padmanabhan et al.; Plionis et al; Porciani et al.; Shen et al.

Towards a successful Model:

-We already saw in PART I: mass dependence

can match the obscured fraction

-A reasonable match to duty cycles and low-z clustering can be found if:

 $1 - \lambda \propto M_{BH}^{-1/3}$

 $2 - \lambda \propto f(z) = [1 - exp(z/2)]$

3-Q=0.5-1

4-Scatter in M_{BH}-Mhalo ~0.3-0.5 dex

 f_s = fraction of AGNs which are satellites

Towards a successful Model II:

SO...WHAT DID WE LEARN ON HOW BHS EVOLVE?

Single- λ models can reproduce the local BH mass function; preferred parameters are 0.5< λ <1 and 0.07< ϵ <0.1.

Broad p(\lambda) distributions yield similar BH growth histories if λ is independent of BH mass.

The <u>high-z clustering</u>, especially at z=4 measured in SDSS, requires very high host halo masses and matching the AGN luminosity function requires 0.4<ε/λ<1, i.e., ε>0.2 if λ>0.5!

If the <u>Eddington ratio decreases with BH mass and z</u>: -match to the AGN fraction in the field and clusters -match to small-scale clustering -match to the obscured fraction

TO GET FINAL ANSWERS:

FROM OBSERVATIONS:

Resolve systematics in the AGN LF knee and bright end
 Understand biases in the λ-distributions
 Systematics in the mean bias values

FROM THEORY:

Convolve continuity Equation with BH merger rates

- Get final BH mass function at all z consistent with ALL observables
- Predict the BH mass function from SAM

Duty cycle of AGNs: fraction of "Active" Galaxies

The Effect of SMBH Merging...

Negligible effect on accretion histories and duty cycles:

CONCLUDING on THE LMF

WILL WE BE ABLE TO OBSERVE z>6 QSOs?

Same RedShift Distributions...but... more Accretion for the more Massive BHs

Very Broad $p(\lambda)$

We have checked we are using the right bias....

Broad Eddington ratio Distributions II

SPECIAL MODELS: λ -dependent Bolometric Correction

Vasudevan & Fabian 2007

SPECIAL MODELS II: Low Accretion in ADAF modes

Low-z Clustering: Small and Large Scales

