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Why are we interested in
DM Halo profiles?
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DM density profiles are very sensitive to our cosmology

• Cold Dark Matter (CDM) predicts cuspy DM profiles, e.g. the
NFW profile.

• Observations of late-type galaxies highlight constant density
cores, which are consistent with Warm Dark Matter 
(e.g. Zentner & Bullock 2003)

• Note that non-circular motions play an important role, and 
need to be highlighted using IFU spectra (see work by
Josh Simon et al.)



Spiral Density Waves
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Density wave theory predicts a relationship between spiral
arm pitch angle and central mass concentration

(e.g. Lin & Shu 1964, 1966; Bertin et al. 1989a, b; Bertin
1993; Bertin & Lin 1996).

Lin & Shu (1964)



Spiral arm morphology I
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There is a weak correlation between Hubbke type and
B/D ratio (e.g. de Jong 1996; Seigar & James 1998a)



Spiral arm morphology II
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Also a weak correlation bewteen Hubble type and
spiral arm pitch angle.

Kennicutt(1981) Seigar & James (1998b)



Spiral arm morphology III
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Galaxies with flocculent spiral structure in the optical
sometimes have Grand-Design Spirals in the near-IR
(Thornley 1996; Seigar et al. 2003)

Thornley (1996)



Spiral arm pitch angles
and shear
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Definition of shear, S, given by

A is first Oort constant, ω is angular velocity

For a rising rotation curve S<0.5

For a flat rotation curve S=0.5

For a falling rotation curve S>0.5



Spiral arm pitch angles
and shear
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Block et al. (1999) showed there is a hint
of a correlation between spiral arm pitch
angle and rotation curve shear, but only
for 4 galaxies.

We now apply this to a larger sample of
galaxies.



NGC 7677
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SABbc; P=17.0±0.8 S=0.66±0.02



ESO 576 -G51
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SBbc; P=30.4±1.9 S=0.47±0.04



NGC 3456
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SBc; P=38.0±0.6 S=0.31±0.02



Spiral arm pitch angle vs
rotation curve type
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Seigar et al. (2005)



Spiral arm pitch angle vs
rotation curve shear
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From near-IR imaging

Seigar et al. (2005)



Spiral arm pitch angles
in the near-IR versus the

optical
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NGC 613

Seigar et al. (2006)



The new correlation
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Seigar et al. (2006)



The connection with
central mass
concentration
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• Low shear  low central mass concentration

• High shear  high central mass concentration

We can use spiral arm morphology to determine
how mass concentrations in disk galaxies.

Use adiabatic contraction models (e.g.
Blumenthal et al. 1986; Gnedin et al. 2004) to
model this.



Adiabatic Contraction
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• Expected in the accepted theory of disk galaxy 
formation (e.g. Fall & Efstathiou 1980; Blumenthal
et al. 1986)

• Baryons cool and fall to the center of a halo

 much slower than one orbital period 
of halo

 halo responds to baryonic infall and 
contracts

• Confirmed in N-body simulations (Gnedin et al. 2004)



The NFW Profile
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• Start with the NFW profile:

Where rs is a scale-length and δc is defined as:

Where c=rvir/rs, or the NFW concentration



Our models
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• We start with an NFW profile and contract
it according the B86 AC recipe (e.g. 
Bullock et al. 2001)

• We also use a pure NFW model

• We estimate the rotation curve slope using
shear/spiral arms and normalize it 
using the V2.2



Model Inputs
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• Disk scale-length in kpc and its 1-σ error

• B/D and its1-σ error

• Disk mass, calculated using the disk 
luminosity and a typical M/L ratio. We
use M/L values of 1.0, 1.3 and 1.6 in B-
band solar units (Bell et al. 2003)

• The rotation velocity at 2.2 disk scale-lengths,
V2.2 in km/s



1-D Bulge/Disk
Decomposition
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ESO 582 -G12     IC 2522



Results of the B/D
Decomposition
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ESO 582 -G12:

• h=36.5±3.8 arcsec

• h=5.48±0.57 kpc

• B/D=0.11

• Ldisk=(1.27±0.11)x1010 L

• V2.2=145 km/s

IC2522:

• h=20.4±2.1 arcsec

• h=3.98±0.41 kpc

• B/D=0.16

• Ldisk=(1.55±0.14)x1010 L

• V2.2=216 km/s



ESO 582 -G12
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Cvir=16-30 f*=0.15-0.40

Seigar et al. (2006)



ESO 582 -G12
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Mvir=5-9x1011 M

Seigar et al. (2006)



IC 2522
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Cvir<8 f*<0.10
Seigar et al. (2006)



IC 2522
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Mvir=1-6x1012 M

Seigar et al. (2006)



ESO 582 -G12 mass
concentrations
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ctot=0.12-0.22 cDM=0.08-0.16

Seigar et al. (2006)



IC 2522 mass
concentrations
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ctot<0.04 cDM<0.02
Seigar et al. (2006)



Rotation curves
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Seigar et al. (2006)

ESO 582 -G12   IC 2522



Application to M31:
Spiral arm morphology
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P=24.7±4.4
Seigar, Barth & Bullock (2007, ApJ, submitted)



M31 Bulge/Disk
decomposition
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2MASS Ks-band
image of M31

Seigar et al. (2007)



M31
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Cvir<20 f*=0.3-0.9



M31
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Mvir=0.7-2.0x1012 M

(Seigar et al. 2007)

c.f. Mvir=8-9x1011 M

From satellite
kinematics & halo stars
by Chapman et al.
(2006) and Fardal et
al. (2006)



M31 mass
concentrations
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ctot=0.06-0.25 cDM=0.04-0.11



M31 model rotation
curves
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All models provide
reasonable fits.

M1 B86 is preferred
due to its concentration

Fit to Rubin & Ford
(1970) rotation curve

Seigar et al. (2007)



Mass profile of M31
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Mvir=(9.9±0.7)x1011 M

Similar to masses found
through kinematics of
satellites, Andromeda
stream etc (e.g. Fardal et
al. 2006; Chapman et al.
2006)

Seigar et al. (2007)

RF70

Evans & Wilkinson (2000)
C06

F06



Summary I

Jan 23rd, Berkeley

• There is a tight 1:1 correlation between optical 
and near-IR spiral arm pitch angles

• There is a strong correlation between spiral arm
pitch angle and rotation curve shear

• Using this we have determined the mass 
concentrations/distributions of 3 galaxies 
(including M31)



Summary II
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• Using the correlation between shear and pitch 
angle we have shown that ESO 582 -G12 
needs AC to reproduce its shear. IC 2522 
has a shear value that is inconsistent with 
AC

• The rotation curve of M31 is consistent with a 
halo that has undergone AC. Its halo virial 
mass of is consistent with estimated derived
using satellite kinematics and the 
Andromeda Stream



Future Work
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• We have ~150 face-on galaxies from the 
Carnegie-Irvine Nearby Galaxies Survey 
(CINGS; PI: Luis Ho) to which we can apply
these methods for estimating mass profiles

• Apply these methods to galaxies which have little
or no kinematic information, e.g. galaxies at
higher redshift in the GOODS or DEEP2 
fields



Galaxies in the GOODS
fields
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Some example galaxies in the GOODS-S field



Nuclear spirals I
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Models of nuclear spiral structure from Maciejewski
(2004a, b):



Nuclear spirals II
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NGC 1530:
Spiral arms
wind up
within 60 pc
- SMBH NGC 5427:

Spiral arms
traced to 200
pc - constant
density core

NGC 3362: Spiral arms
traced to 120 pc - constant
density core



The Carnegie-Irvine Nearby
Galaxies Survey (CINGS)
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http://www.ociw.edu/~lho/projects/CINGS/CINGS.html


