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The Universe is Accelerating

● 3 ingredients of standard cosmology:

Homogeneity & Isotropy
- FRW metric

Stress-Energy Content
- Matter & Radiation

Decelerating Universe

What is wrong ? 
Or missing ?

General Relativity (GR)
- Friedmann Equation
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Physics behind Acceleration

● Modify any of the ingredients:

Homogeneity & Isotropy
- FRW metric

Stress-Energy Content
- Matter & Radiation

Accelerating Universe

Backreaction? Averaging?

General Relativity (GR)
- Friedmann Equation
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Physics behind Acceleration

● Modify any of the ingredients:

Homogeneity & Isotropy
- FRW metric

Stress-Energy Content
- Matter & Radiation   

Accelerating Universe

and 
Dark Energy ?

General Relativity (GR)
- Friedmann Equation
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Physics behind Acceleration

● Modify any of the ingredients:

Homogeneity & Isotropy
- FRW metric

Stress-Energy Content
- Matter & Radiation

Accelerating Universe

Modified Gravity ?

(focus of this talk)

General Relativity (GR)
- Friedmann Equation
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Physics behind Acceleration

● Minimal solution: cosmological constant 

Homogeneity & Isotropy
- FRW metric

Stress-Energy Content
- Matter & Radiation

Accelerating Universe

 

General Relativity (GR)
- Friedmann Equation
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Modified Gravity: Challenges

Theoretical Challenge:
● Gravity constrained on wide range of 

scales:
– Early Universe: BBN, CMB
– Growth of structure
– Solar System

● Idea: reduce to GR in high-curvature regime
– Applies to Early Universe as well as high-density 

regions today
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Modified Gravity: Challenges

Observational Challenge:
● How can we distinguish Modified Gravity 

from GR + Dark Energy ?
– (Almost) any expansion possible with Dark Energy

● Beyond background: growth of structure
– Predictions straightforward in linear regime
– Non-linear regime less so...
– Compare modified gravity with Dark Energy model 

with identical expansion history
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Probing gravity: linear vs 
nonlinear regime

Linear regime: CMB, SN, ISW, BAO

Parametrizing gravity possible --> model-independent 
constraints

Limited statistical/constraining power (e.g. f(R))

Non-linear regime: galaxy clustering, weak lensing, 
cluster abundance

No general parametrization: non-linear mechanism  of 
gravity model important

Specialized N-body simulations necessary

Wealth of observables available

Lots of statistics and S/N
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Modified Gravity Models

Two known and fully worked models 
achieving acceleration:

● DGP braneworld model
– Gravity “leaks” into large extra dimension

● f(R) model
– Phenomenological extension of GR
– Equivalent to scalar-tensor theory

● Both use non-linear mechanism to restore 
GR locally
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f(R) Gravity

Hu & Sawicki, PRD 07

● Simplest workable modified gravity model
● Generalize Lagrangian of General 

Relativity:

● Choose function which (in CDM limit) 
becomes:
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f(R) Gravity

● f(R) model produces CDM expansion 
history without true 
– Difference in H(z) of order

● Equivalent to scalar-tensor theory

– Scalar field    --> 5th force

–  Grav. force enhanced by 4/3 within
 

● Chameleon effect: recover GR locally
– Scalar field decouples in high-density regions
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DGP Braneworld cosmology

● Dvali-Gabadadze-Porrati model:
– Matter / radiation confined to 4D brane in 

5D Minkowski space
– Action constructed to reduce to GR              

on small scales

● Cross-over scale
Dvali, Gabadadze, Porrati 00
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DGP Braneworld cosmology

● Grav. force scales as 

● Cosmology: modified Friedmann eqn:

–               Normal branch, decelerating
–                  Self-accelerating branch
– GR limit:

Deffayet 01
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DGP Branches

● Self-accelerating branch
– Accelerating today if 

– w
eff

 ~ -0.5 ... -0.8

– ~4 conflict with CMB+Supernovae

● Normal branch
– Have to add  or dark energy on brane

Fang et al. 08

Lombriser et al. 09,
FS 09b
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Growth of structure in DGP

● Large scales                  :
– 5D treatment of perturbations necessary

● Sub-horizon scales: effective scalar-tensor 
theory

– Massless field      -  brane-bending mode
–     contributes to dynamical potential:

– Normal branch:     attractive
– Self-acc. branch:     repulsive Newtonian pot.

Koyama & Maartens 06,
Nicolis & Rattazzi 04
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Brane-bending mode

● On linear scales :
– Effective grav. constant
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Brane-bending mode

● On linear scales :

● When              , non-linear interactions of      
important:

– Non-linear interactions generic to braneworld 
models (Gauss-Codazzi eq.)

Time derivatives neglected: sub-horizon scales
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Non-linear interactions

● Hard: non-linear in derivatives of 
– No superposition principle

● Only numerical solution in general
– As part of N-body simulation
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Non-linear interactions

● Two analytically solvable cases:

1. Plane wave: 

Non-linearity cancels !
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Non-linear interactions

● Two analytically solvable cases:

2. Spherically symmetric mass

●     saturates within Vainshtein radius
● See later.
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Simulating DGP

● Need self-consistent solution of 
nonlinear   field and dark matter

● Particle-mesh code:
– Density and potential are 

evaluated on cubic grid
– Given modified potential, 

propagation of particles 
unchanged
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Main task: solve for potential

● Newtonian potential      :
– Obtained via Fourier transform of density

● Brane-bending mode    :
– Non-linear relaxation scheme (Newton-Raphson)

● Parallelized with multi-grid acceleration

● Finally:

● Non-linear relaxation time-consuming:
– CPU time ~20x that of ordinary GR simulations 

FS 09a,
Oyaizu 08
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Simulated Models

sDGP: Best-fit flat self-accelerating DGP 
model

– No  or dark energy

nDGP: normal-branch with dark energy
– Exact CDM expansion history: r

c
 unconstrained

– Contrived model... but fully understood
– Effective model for generalized braneworlds

Fang et al. 08

FS 09b
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Cosmology: parameters

● Simulate three models in each case:
– GR with identical expansion history: “QCDM” / CDM
– Full DGP
– Linearized DGP

Fang et al., 2009

Box sizes: 400, 256, 128, 64 Mpc/h
3-6 runs each
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Results: Structure Formation

Density field
Slice through simulation
at z=0, size: 64 Mpc/h

GR – CDM
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Results: Structure Formation

Density field
Slice through simulation
at z=0, size: 64 Mpc/h

DGP normal branch + DE
r

c
 = 3000 Mpc
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Brane-bending mode & Potential

sDGP simulation, 64 Mpc/h box, z=0
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Results: Matter Power Spectrum

● Full and linearized DGP vs GR (z=0)

Vainshtein 
mechanism

sDGP

FS 09a,b
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Results: Matter Power Spectrum

● Full and linearized DGP vs GR (z=0)

halofit

sDGP

FS 09a,b
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Results: Matter Power Spectrum

● Full and linearized DGP vs GR (z=0)

BAO

sDGP

FS 09a,b
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Results: Matter Power Spectrum

● Full and linearized DGP vs GR (z=0)

nDGP

r
c
=3000 Mpc

r
c
=500 Mpc

sDGP

FS 09a,b
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Results: Matter Power Spectrum

● Can we model DGP effects without running 
300 hr simulations ?

nDGP

r
c
=3000 Mpc

r
c
=500 Mpc

– Extend predictions to 
different cosmological 
parameter sets

– Understand physics 
behind DGP effects
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Halo Model of Large-Scale 
Structure

Goal: map linear initial density field to non-linear large-
scale structure today

Ansatz: all matter in bound dark matter halos

Basic halo properties:

1. Mass function: abundance

2. Halo bias: clustering

3. Halo density profiles: interior matter distribution
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Halo Model of Large-Scale 
Structure

Goal: map linear initial density field to non-linear large-
scale structure today

Ansatz: all matter in bound dark matter halos

Basic halo properties:

1. Mass function

2. Halo bias

3. Halo density profiles

Spherical Collapse &
Press-Schechter Theory
(Sheth-Tormen)

NFW profile
+ concentration relation

}
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Press-Schechter Ansatz

● Regions in initial density field with        
are in collapsed halos today

–         : density field smoothed at scale R

–                                    <--- linear P(k)

●      calculated from collapse of spherical 
tophat perturbation

● “Size” of halo set by virial radius
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Spherical Collapse in DGP

● Spherical mass:     eq. solvable analytically
–     saturates within         

Vainshtein radius

● Collapse not self-similar      
in general

FS, Hu, Lima 09
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Spherical Collapse in DGP

● Spherical mass:     eq. solvable analytically
–     saturates within         

Vainshtein radius

● Collapse not self-similar      
in general

● In case of perfect tophat:
– Collapse self-similar
– Modified force described by

FS, Hu, Lima 09
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Spherical Collapse in DGP

● Linear limit:

FS, Hu, Lima 09
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Spherical Collapse in DGP

● Vainshtein limit:

FS, Hu, Lima 09
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Spherical Collapse in DGP

● Calculate    using

–            and

–

– Limiting cases of         
non-linear interactions

FS, Hu, Lima 09
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Virial Theorem

●                                       with:

● Standard approach: 
● However,        not conserved if:
– Gravitational forces evolve
– (Effective) dark energy density evolves

● Applies to DE with             as well

Virial radius
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Virial Theorem

● Our approach: 
– evaluate virial condition 

during collapse
– does not assume 

energy conservation

FS, Hu, Lima 09
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Virial Theorem

● Our approach: 
– evaluate virial condition 

during collapse
– does not assume 

energy conservation

● Some differences in 
virial overdensity      
in quintessence 
models

FS, Hu, Lima 09
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Halo mass function in DGP

Sensitive probe of growth of structure

nDGP: relative deviation of 
dn/dln M from CDM

Order unity enhancement
at cluster masses
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Halo mass function in DGP

Spherical collapse + Sheth-Tormen mass fct.

nDGP: relative deviation of 
dn/dln M from CDM

Order unity enhancement 
at cluster masses ~ 1014 M

o

Spherical collapse
- range between “full” and 
no Vainshtein mechanism

FS, et al. 08,
FS, Hu, Lima 09
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Halo mass function in DGP

Spherical collapse + Sheth-Tormen mass fct.

nDGP sDGP
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Halo Density Profiles

● No strong DGP 
effects in inner cores 

– Scale radius r
s
 

unchanged
– Cores formed early

● Some effects in  
infall region 

– at few R
200

Rel. dev. from GR



49

Halo model power spectrum

Halo mass function, bias, + profiles --> P(k)
– P(k) = P2h(k) + P1h(k)

– Assume unmodified halo 
profiles (cf simulations)

2-halo, large scales

1-halo, small scales
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Halo model power spectrum

Halo mass function, bias, + profiles --> P(k)
– P(k) = P2h(k) + P1h(k)

– Assume unmodified halo 
profiles (cf simulations)

● Excellent match to 
full sDGP simulations

sDGP

2-halo, large scales

1-halo, small scales



51

Halo model power spectrum

Halo mass function, bias, + profiles --> P(k)

nDGP sDGP
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Application: constraining f(R) 
with Cluster Abundance

● Mass function 
enhancement in f(R)

– f
R0

 = 10-4

● Spherical collapse
predictions

– Conservative: 
Lower bound on f(R)     
effects

FS et al. 08
FS, Vikhlinin, Hu 09
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Application: constraining f(R) 
with Cluster Abundance

● X-ray clusters
– ROSAT survey + Chandra followup

● Observable: N(>M
0
)

● Treat f(R) effect as effective 
8
 enhancement

– No expensive recomputation of cluster likelihood
– Neglect information in shape of f(R) enhancement

● CMB constrains primordial normalization
– SN, H

0
, BAO break parameter degeneracies

FS, Vikhlinin, Hu 09
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Application: constraining f(R) 
with Cluster Abundance

● Marginalized   
constraints 
(95% CL):

– cf. CMB, SN, g-ISW:

● Reach of 5th force:





FS, Vikhlinin, Hu 09
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Room for Improvement

● Dominant observational systematic: cluster 
mass scale

– (M) = +-9%   -->                                  incl. syst. 

● Uses only low-z sample, ~30 clusters
● Simple model...
– Ignore f(R) effects on dynamical mass (up to 30%)
– Using “less conservative” collapse parameters:
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Conclusions

● Modified Gravity: fundamental alternative to 
Dark Energy
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Conclusions

● Modified Gravity: fundamental alternative to 
Dark Energy

● Understanding structure formation in 
non-linear regime crucial 
– prove viability of models and place constraints
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Conclusions

● Modified Gravity: fundamental alternative to 
Dark Energy

● Understanding structure formation in      
non-linear regime crucial 
– prove viability of models and place constraints

● Simulations of modified gravity are opening 
the door to probing gravity on Mpc scales
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Conclusions

● Modified Gravity: fundamental alternative to 
Dark Energy

● Understanding structure formation in      
non-linear regime crucial 
– prove viability of models and place constraints

● Simulations of modified gravity are opening 
the door to probing gravity on Mpc scales

– Full simulations of DGP and f(R) now done
– In progress: understanding non-linear mechanisms 

generic in modified gravity
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Conclusions

● First self-consistent simulations of DGP 
model: 

– Simple spherical collapse model seems to capture 
main effects
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Conclusions

● First self-consistent simulations of DGP 
model: 

– Simple spherical collapse model seems to capture 
main effects

● Physical model + calibration with 
simulations --> observational constraints

● Using X-ray clusters, linear regime 
constraints on f(R) improved by ~1000
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Spherical Collapse in DGP

● Linear collapse threshold

● Virial overdensity
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        Spherical Collapse +         
Sheth-Tormen prescription

Halo bias

nDGP

sDGP
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Matter power spectrum

● Power spectrum for 
GR (QCDM)

● Cross-check with 
standard fitting 
formulas

– Smith et al.



65

Halo mass function

● Mass function for   
GR (QCDM)

● Cross-check with 
standard fitting 
formulas

– Tinker et al.
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Evading Solar System Tests: 
Chameleon Mechanism in f(R)

● Scalar field     with density-dependent 
potential:

● GR restored in high-density environments 
– Chameleon operates when background field 

small enough:

Khoury & Weltman, PRD, 2004

Hu & Sawicki, arXiv:0705.1158
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Code Tests

● Spherical mass (top-hat profile):
– Compare with analytical solution

Deviation of g from 
Newtonian value field profile
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Cosmology: initial conditions

● At initial redshift (z = 49): 
– Density: Gaussian random field according to linear 

power spectrum
– Generate particle positions, 

velocities using Zel'dovich 
approximation

● Correct initial conditions
for early-time DGP effects
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Results: Nonlinear suppression 
of brane-bending mode

Average halo profiles:
– brane-bending mode
– acceleration in DGP and 

GR

GR is restored inside 
halos

● Simplified ansatz of 
Khoury&Wyman only 
works in inner regions
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Constraining f(R) from cluster 
abundance

● Constraints marginalized over h,A
s

– Degeneracy 
between  


m
, f

R0
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