Non-linear Structure Formation in Modified Gravity

Fabian Schmidt Caltech - TAPIR

with Wayne Hu, Marcos Lima, Alexey Vikhlinin, Hiroaki Oyaizu

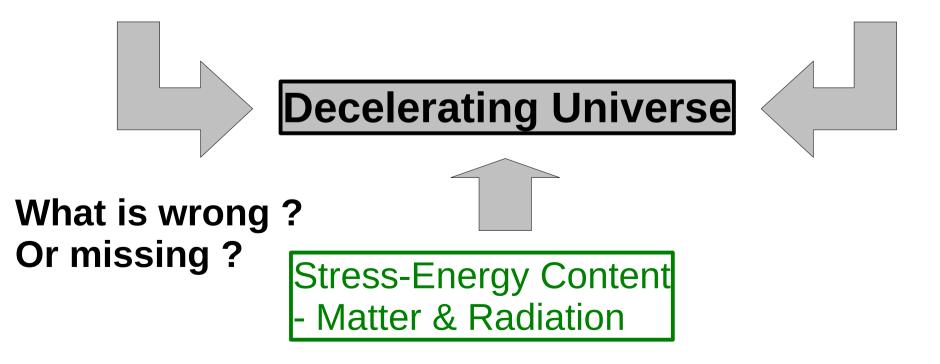
Berkeley TAC seminar, 11/30/09

The Universe is Accelerating

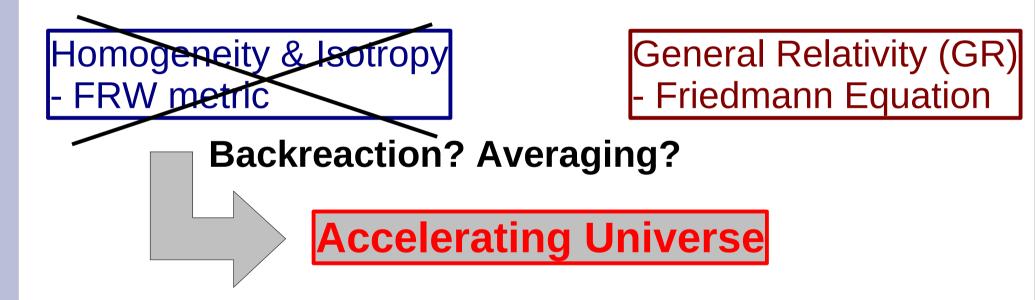
• 3 ingredients of standard cosmology:

Homogeneity & Isotropy
- FRW metric

General Relativity (GR) - Friedmann Equation



Modify any of the ingredients:

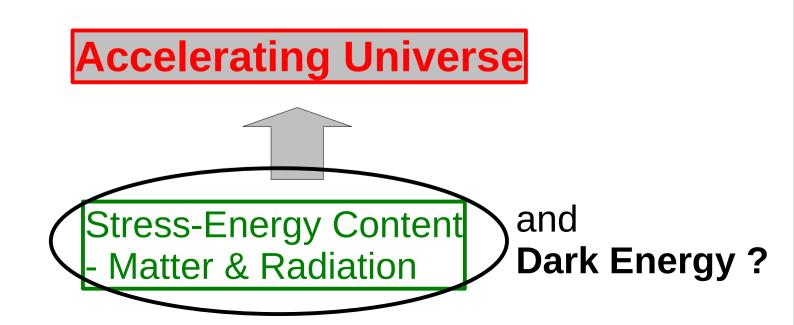


Stress-Energy Content
- Matter & Radiation

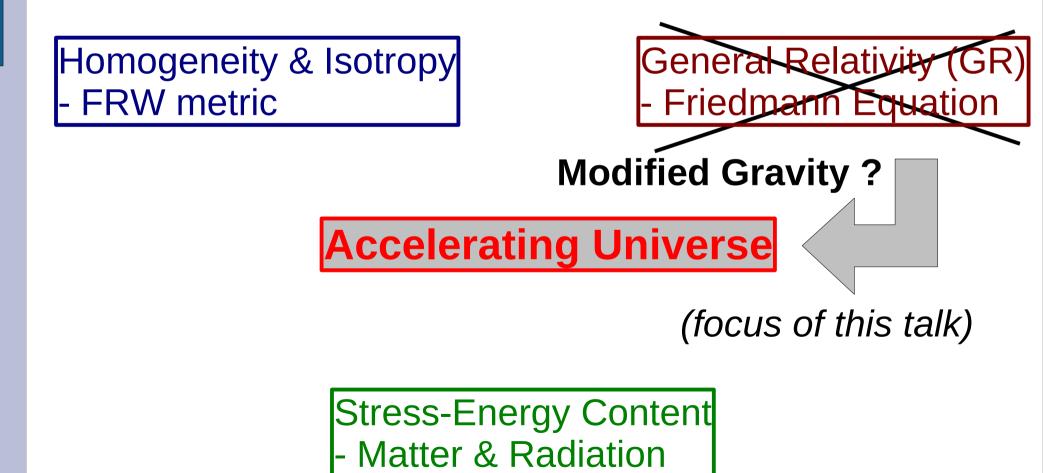
Modify any of the ingredients:

Homogeneity & Isotropy
- FRW metric

General Relativity (GR) - Friedmann Equation



Modify any of the ingredients:



- Minimal solution: cosmological constant Λ

Homogeneity & Isotropy
- FRW metric

General Relativity (GR) - Friedmann Equation

Accelerating Universe

Stress-Energy Content
- Matter & Radiation

Modified Gravity: Challenges

Theoretical Challenge:

- Gravity constrained on wide range of scales:
 - Early Universe: BBN, CMB
 - Growth of structure
 - Solar System

Idea: reduce to GR in high-curvature regime

Applies to Early Universe as well as high-density regions today

Modified Gravity: Challenges

Observational Challenge:

- How can we distinguish Modified Gravity from GR + Dark Energy ?
 - (Almost) any expansion possible with Dark Energy

Beyond background: growth of structure

- Predictions straightforward in *linear regime*
- Non-linear regime less so...
- Compare modified gravity with Dark Energy model with *identical expansion history*

Probing gravity: linear vs nonlinear regime

Linear regime: CMB, SN, ISW, BAO

- Parametrizing gravity possible --> model-independent constraints
- Limited statistical/constraining power (e.g. f(R))

Non-linear regime: galaxy clustering, weak lensing, cluster abundance

- No general parametrization: non-linear mechanism of gravity model important
- Specialized N-body simulations necessary
- Wealth of observables available
- Lots of statistics and S/N

Modified Gravity Models

- Two known and fully worked models achieving acceleration:
- DGP braneworld model
 - Gravity "leaks" into large extra dimension
- f(R) model
 - Phenomenological extension of GR
 - Equivalent to scalar-tensor theory
- Both use *non-linear mechanism* to restore GR locally

f(R) Gravity

- Simplest workable modified gravity model
- Generalize Lagrangian of General Relativity:

$$\mathcal{L}_g = \frac{1}{16\pi G} (R - 2\Lambda) \longrightarrow \frac{1}{16\pi G} (R + f(R))$$

• Choose function which (in Λ CDM limit) becomes:

$$f(R) \approx -2\Lambda - f_{R0} \frac{R_0^2}{R}$$

Hu & Sawicki, PRD 07

f(R) Gravity

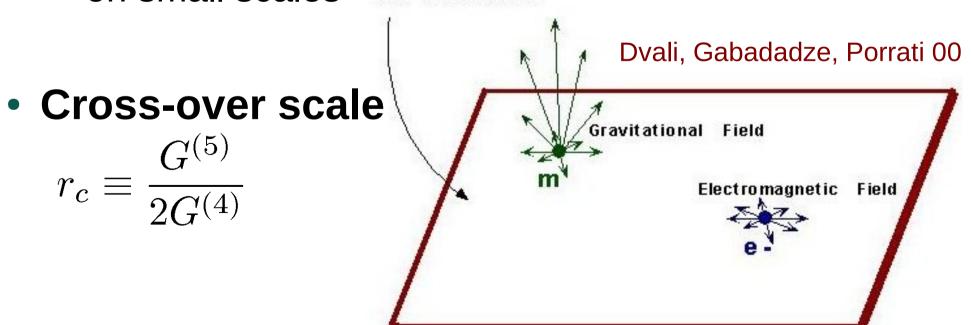
 f(R) model produces ΛCDM expansion history without true Λ

– Difference in H(z) of order $f_{R0} \ll 1$

- Equivalent to scalar-tensor theory
 - Scalar field $f_R \equiv \frac{df}{dR}$ --> 5th force
 - Grav. force enhanced by 4/3 within $\lambda_C = \sqrt{3} f_{RR}$
- Chameleon effect: recover GR locally
 - Scalar field decouples in high-density regions

DGP Braneworld cosmology

- Dvali-Gabadadze-Porrati model:
 - Matter / radiation confined to 4D brane in 5D Minkowski space
 - Action constructed to reduce to GR on small scales 4-d membrane



DGP Braneworld cosmology

Grav. force scales as

$$F \sim \left\{ \begin{array}{cc} r^{-2}, & r \lesssim r_c \\ r^{-3}, & r \gtrsim r_c \end{array} \right.$$

Cosmology: modified Friedmann eqn:

$$H^2 + \varepsilon \frac{H}{r_c} = \frac{8\pi G}{3}\rho$$

Deffayet 01

- $\varepsilon = 1$: Normal branch, decelerating
- $\varepsilon = -1$: Self-accelerating branch

- GR limit:
$$H \gg \frac{1}{r_c}$$

DGP Branches

- Self-accelerating branch
 - Accelerating today if $r_c \sim H_0^{-1} \sim 3000 \,\mathrm{Mpc/h}$
 - $W_{eff} \sim -0.5 \dots -0.8$
 - $\sim 4\sigma \text{ conflict}$ with CMB+Supernovae Fang et al. 08
- Normal branch
 - Have to add Λ or *dark energy* on brane

Lombriser et al. 09, FS 09b

Growth of structure in DGP

• Large scales $\gtrsim r_c, H^{-1}$:

Koyama & Maartens 06, Nicolis & Rattazzi 04

- 5D treatment of perturbations necessary
- Sub-horizon scales: effective scalar-tensor theory
 - Massless field φ *brane-bending mode*
 - φ contributes to dynamical potential:
- $\Psi = \Psi_N + \frac{1}{2}\varphi$ Newtonian pot.

- Normal branch: φ attractive
- Self-acc. branch: φ repulsive

Brane-bending mode

• On linear scales : $\varphi = \frac{2}{3\beta} \Psi_N$, $\beta(a) \propto H r_c$

- Effective grav. constant

$$G_N \to G_{\text{eff}} = G_N \left(1 + \frac{1}{3\beta(a)} \right)$$

Brane-bending mode

- On linear scales : $\varphi = \frac{2}{3\beta} \Psi_N$, $\beta(a) \propto H r_c$
- When $\delta \rho / \bar{\rho} \gtrsim 1$, non-linear interactions of φ important:

$$\nabla^2 \varphi + \frac{r_c^2}{3\beta a^2} [(\nabla^2 \varphi)^2 - (\nabla_i \nabla_j \varphi) (\nabla^i \nabla^j \varphi)] = \frac{8\pi G a^2}{3\beta} \delta \rho$$

 Non-linear interactions generic to braneworld models (Gauss-Codazzi eq.)

Time derivatives neglected: sub-horizon scales

Non-linear interactions

$$\nabla^2 \varphi + \frac{r_c^2}{3\beta a^2} [(\nabla^2 \varphi)^2 - (\nabla_i \nabla_j \varphi) (\nabla^i \nabla^j \varphi)] = \frac{8\pi G a^2}{3\beta} \delta \rho$$

- Hard: non-linear in derivatives of $\boldsymbol{\phi}$
 - No superposition principle
- Only numerical solution in general
 - As part of N-body simulation

Non-linear interactions

$$\nabla^2 \varphi + \frac{r_c^2}{3\beta a^2} [(\nabla^2 \varphi)^2 - (\nabla_i \nabla_j \varphi) (\nabla^i \nabla^j \varphi)] = \frac{8\pi G a^2}{3\beta} \delta \rho$$

• Two analytically solvable cases:

1. Plane wave:
$$\varphi \sim e^{i\mathbf{k}\cdot\mathbf{x}} \Rightarrow -k^2\varphi = \frac{8\pi Ga^2}{3\beta}\delta\rho$$

Non-linearity cancels !

Non-linear interactions

$$\nabla^2 \varphi + \frac{r_c^2}{3\beta a^2} [(\nabla^2 \varphi)^2 - (\nabla_i \nabla_j \varphi) (\nabla^i \nabla^j \varphi)] = \frac{8\pi G a^2}{3\beta} \delta \rho$$

- Two analytically solvable cases:
- 2. Spherically symmetric mass
 - arphi saturates within Vainshtein radius $\,R_*$ =

$$= \left(\frac{8r_sr_c^2}{9\beta^2}\right)^{1/3}$$

• See later.

 $R_{*,\odot} \sim 100 \,\mathrm{pc}$ for $r_c \sim \mathrm{Gpc}$

Simulating DGP

 Need self-consistent solution of nonlinear φ field and dark matter

Particle-mesh code:

- Density and potential are evaluated on cubic grid
- Given modified potential, propagation of particles unchanged



Main task: solve for potential

• Newtonian potential Ψ_N :

FS 09a, Oyaizu 08

- Obtained via Fourier transform of density
- Brane-bending mode φ :
 - Non-linear relaxation scheme (Newton-Raphson)
 - Parallelized with multi-grid acceleration

• Finally:
$$\Psi = \Psi_N + \frac{1}{2}\varphi$$

- Non-linear relaxation *time-consuming:*
 - CPU time ~20x that of ordinary GR simulations

Simulated Models

sDGP: Best-fit flat self-accelerating DGP model Fang et al. 08

– No Λ or dark energy

nDGP: normal-branch with dark energy

– Exact Λ CDM expansion history: r_unconstrained

FS 09b

- Contrived model... but fully understood

- Effective model for generalized braneworlds

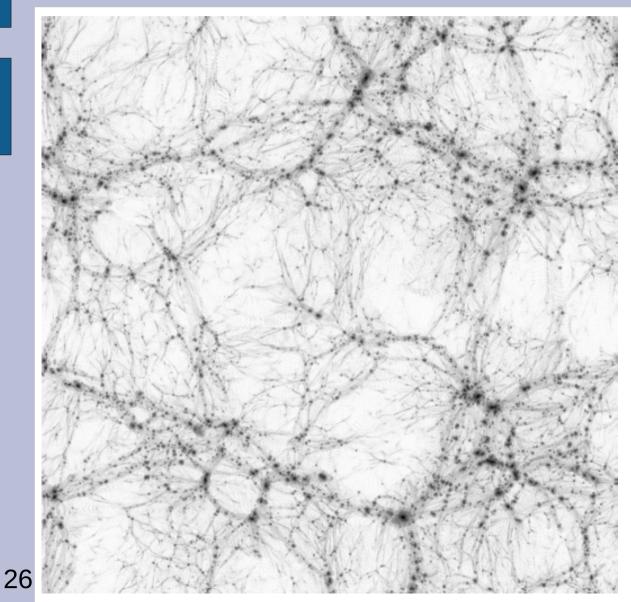
Cosmology: parameters

	QCDM	sDGP	ΛCDM	nDGP-1	nDGP–2
Ω_m	0.258	0.258	0.259	0.259	0.259
Ω_{Λ} (eff.)	0	0	0.741	0.741	0.741
$r_c [{ m Mpc}]$	∞	6118	∞	500	3000

- Simulate three models in each case:
 - GR with identical expansion history: "QCDM" / ΛCDM
 - Full DGP
 - Linearized DGP

Box sizes: 400, 256, 128, 64 Mpc/h 3-6 runs each

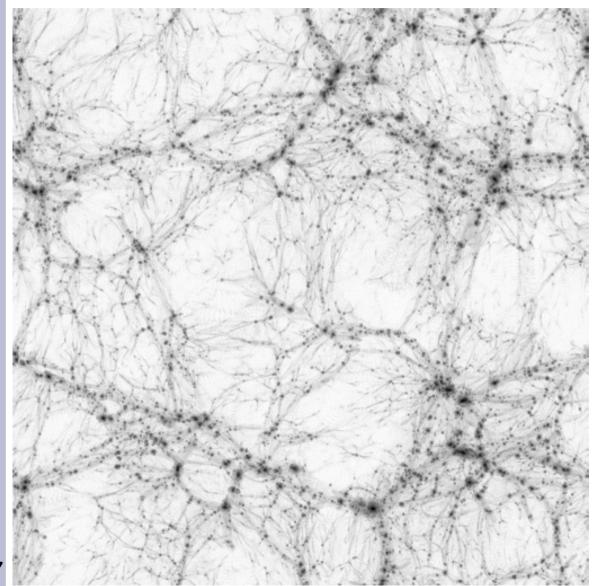
Results: Structure Formation



Density field Slice through simulation at z=0, size: 64 Mpc/h

 $\text{GR}-\Lambda\text{CDM}$

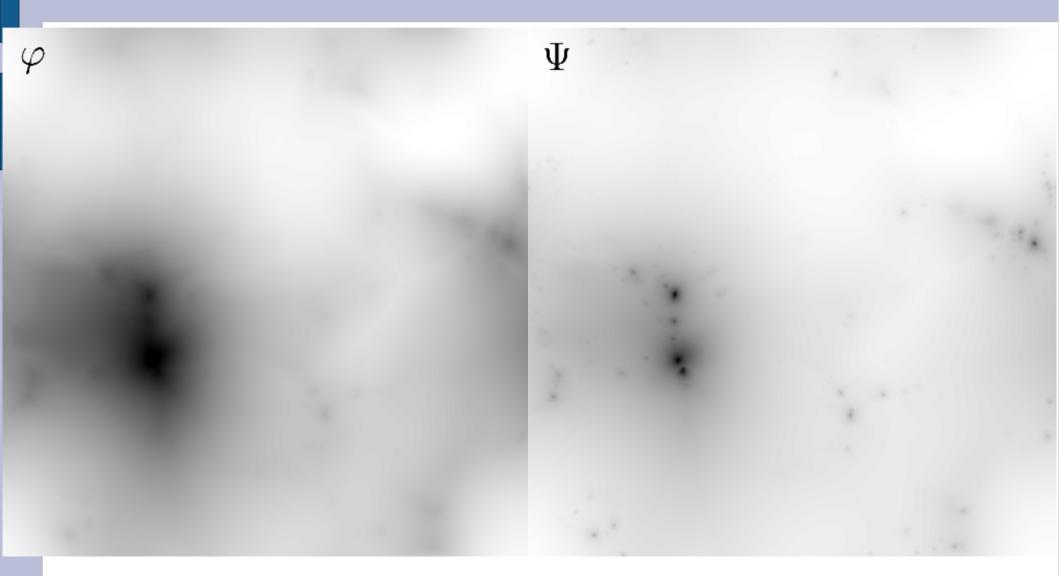
Results: Structure Formation



Density field Slice through simulation at z=0, size: 64 Mpc/h

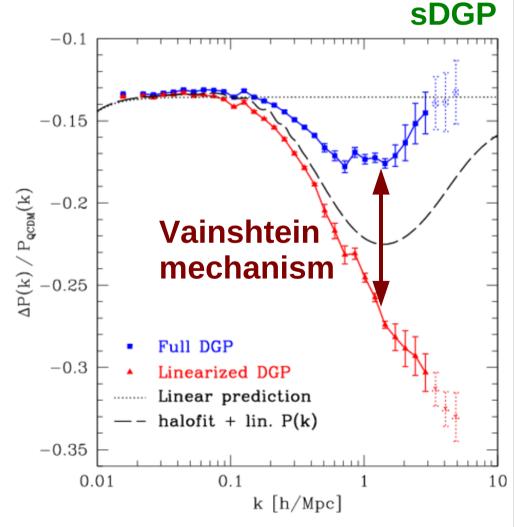
DGP normal branch + DE r_c = 3000 Mpc

Brane-bending mode & Potential

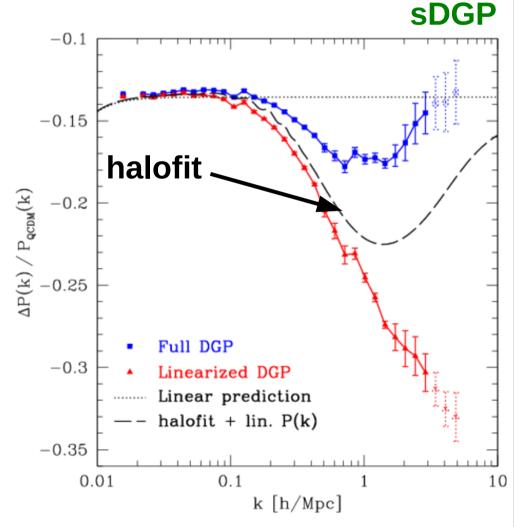


sDGP simulation, 64 Mpc/h box, z=0

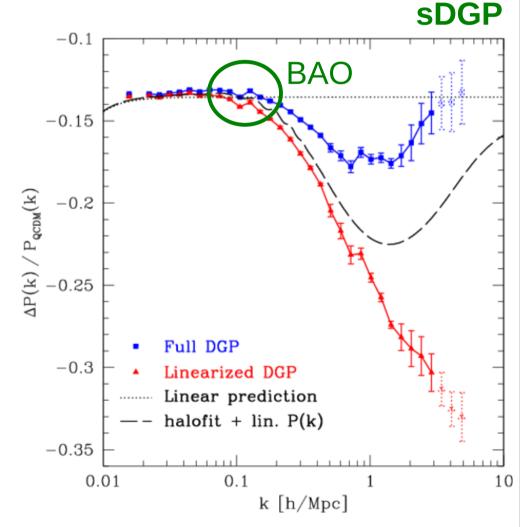
• Full and linearized DGP vs GR (z=0)

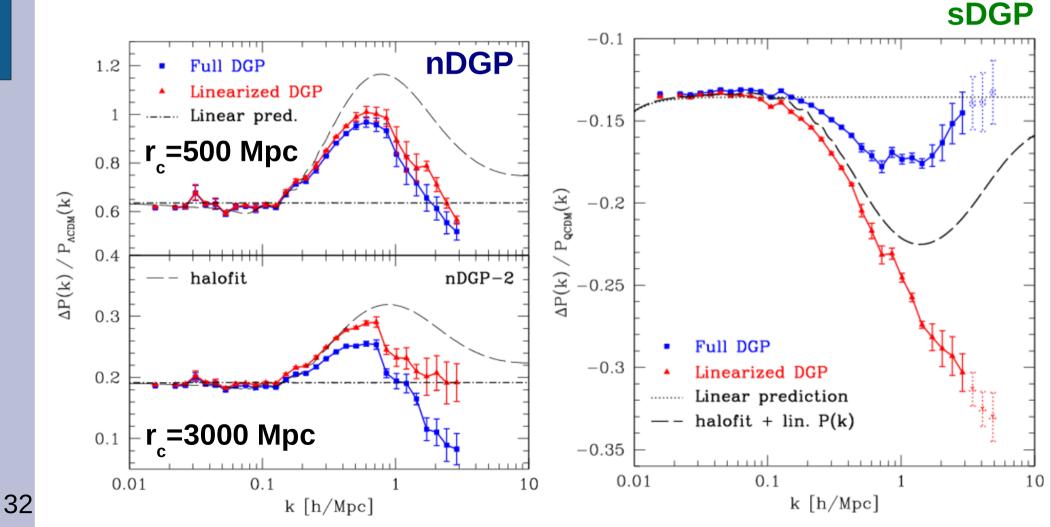


• Full and linearized DGP vs GR (z=0)

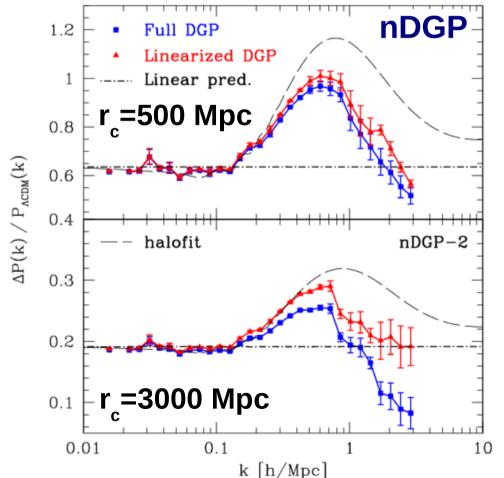


• Full and linearized DGP vs GR (z=0)





 Can we model DGP effects without running 300 hr simulations ?



- Extend predictions to different cosmological parameter sets
- Understand physics behind DGP effects

Halo Model of Large-Scale Structure

Goal: map *linear initial density* field to *non-linear largescale structure* today

Ansatz: all matter in bound dark matter halos

Basic halo properties:

- 1. Mass function: abundance
- 2. Halo bias: clustering

3. Halo density profiles: interior matter distribution

Halo Model of Large-Scale Structure

Goal: map *linear initial density* field to *non-linear largescale structure* today

Ansatz: all matter in bound dark matter halos

Basic halo properties:

- **1. Mass function**
- 2. Halo bias

Spherical Collapse & Press-Schechter Theory (Sheth-Tormen)

3. Halo density profiles

NFW profile + concentration relation

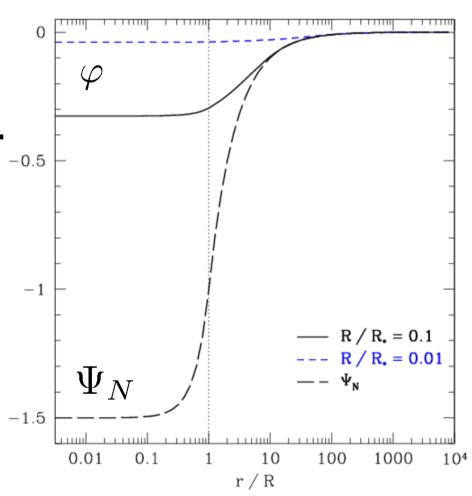
Press-Schechter Ansatz

- Regions in *initial density field* with $\delta(R) > \delta_c$ are in collapsed halos today
 - $\delta(R)$: density field smoothed at scale R $\rightarrow M = 4\pi/3\bar{\rho}R^3$
 - $\operatorname{Var}(\delta(R)) = \sigma^2(M) \operatorname{<---} \operatorname{linear} P(k)$
- δ_c calculated from collapse of spherical tophat perturbation
- "Size" of halo set by virial radius

FS, Hu, Lima 09

• Spherical mass: φ eq. solvable analytically

- φ saturates within Vainshtein radius
- Collapse not self-similar in general

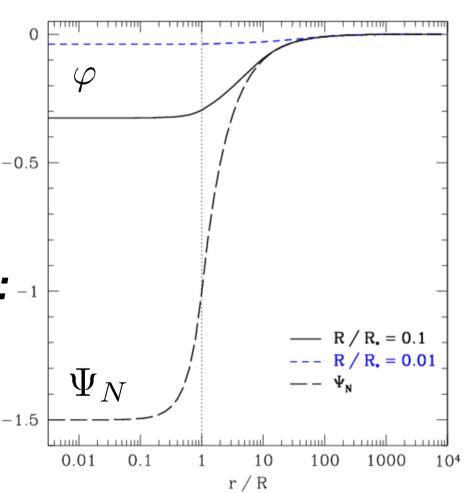


FS, Hu, Lima 09

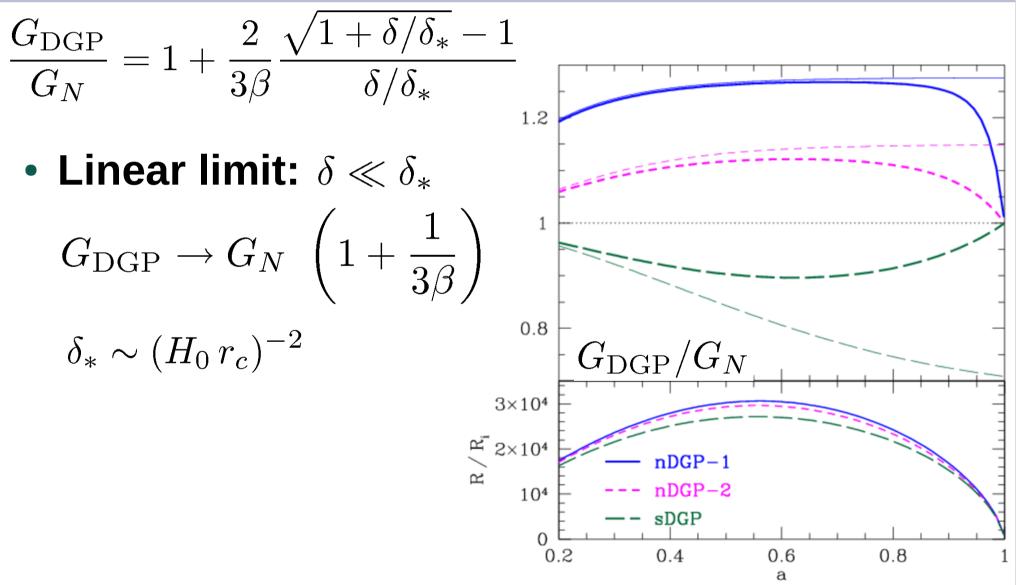
• Spherical mass: φ eq. solvable analytically

- φ saturates within Vainshtein radius
- Collapse not self-similar in general
- In case of perfect tophat: -1
 - Collapse self-similar
 - Modified force described by

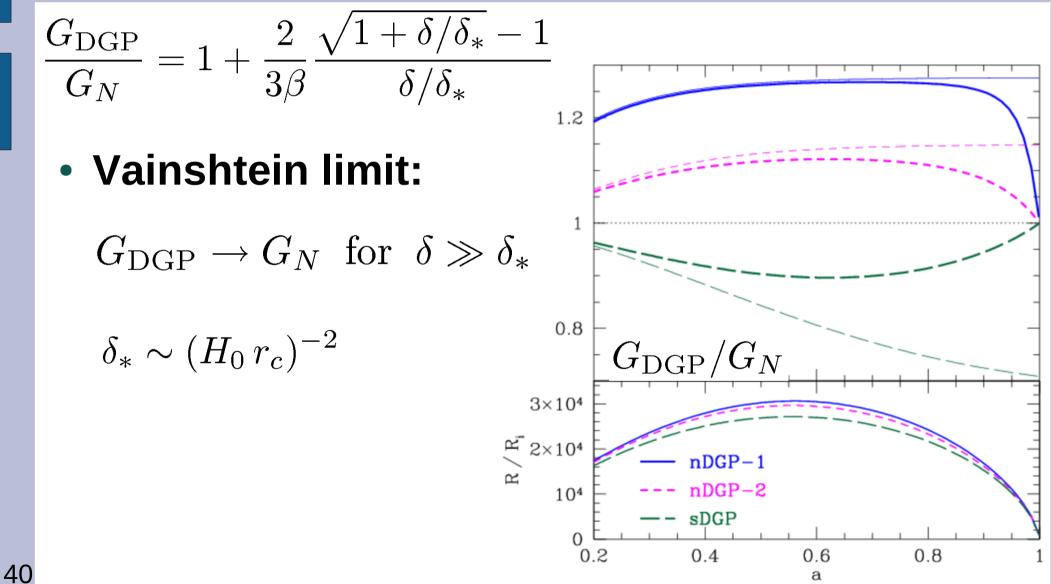
 $G_N \longrightarrow G_{\mathrm{DGP}}(\delta, a)$



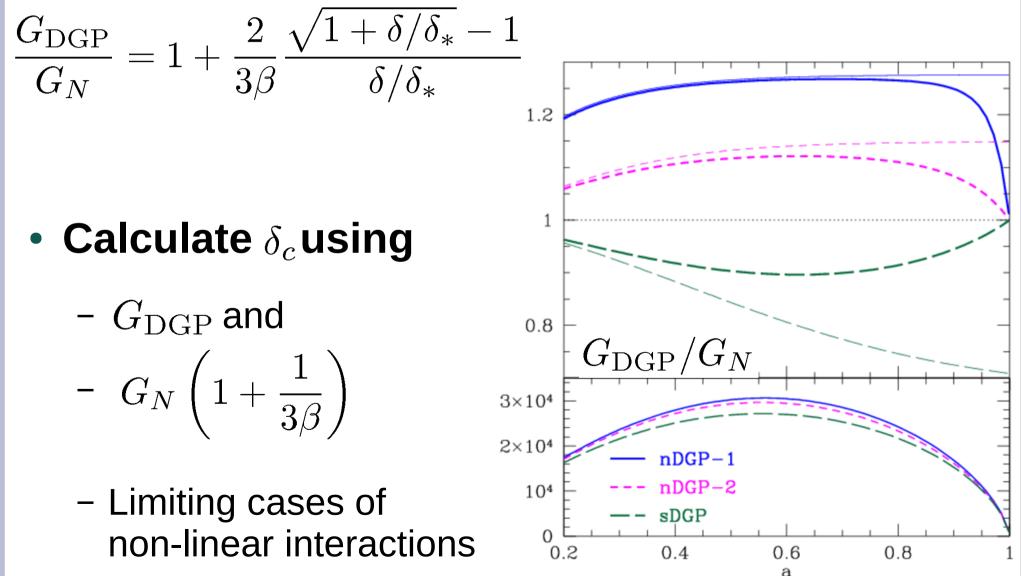
FS, Hu, Lima 09



FS, Hu, Lima 09



FS, Hu, Lima 09



Virial Theorem

•
$$2T(R_{vir}) + W(R_{vir}) = 0$$
 with: $T = \frac{3}{10}M\dot{R}^2$
Virial radius $W = -\int d^3x \rho \, \boldsymbol{x} \cdot \boldsymbol{\nabla} \Psi$

- Standard approach: $E_{tot} = T + U = const.$
- However, E_{tot} not conserved if:
 - Gravitational forces evolve
 - (Effective) dark energy density evolves
- Applies to DE with $w \neq -1$ as well

Virial Theorem

FS, Hu, Lima 09

Our approach:

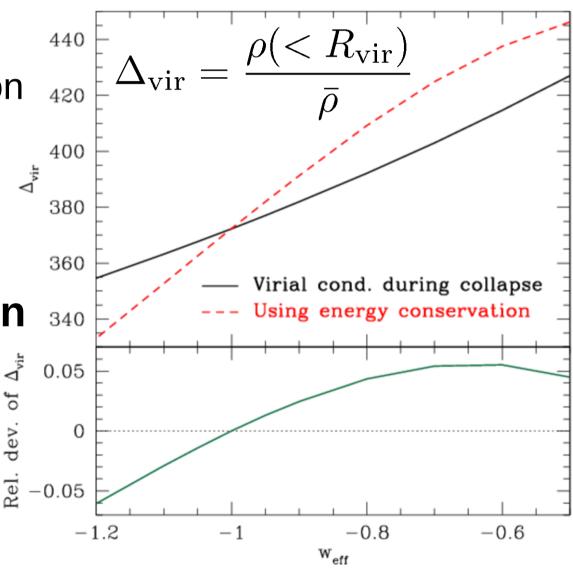
- evaluate virial condition during collapse
- does not assume energy conservation

Virial Theorem

FS, Hu, Lima 09

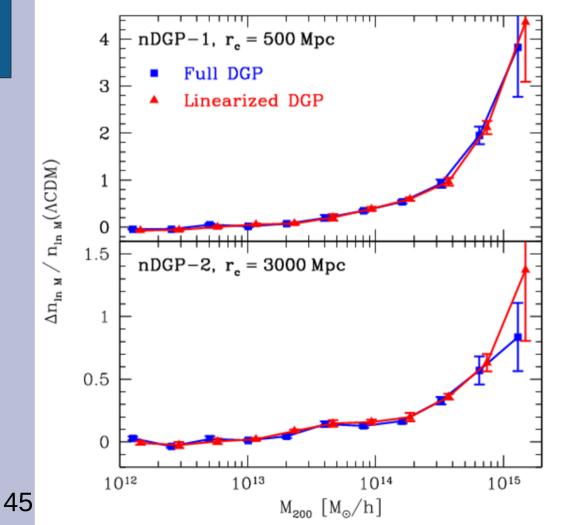
• Our approach:

- evaluate virial condition during collapse
- does not assume energy conservation
- Some differences in virial overdensity in quintessence models



Halo mass function in DGP

Sensitive probe of growth of structure

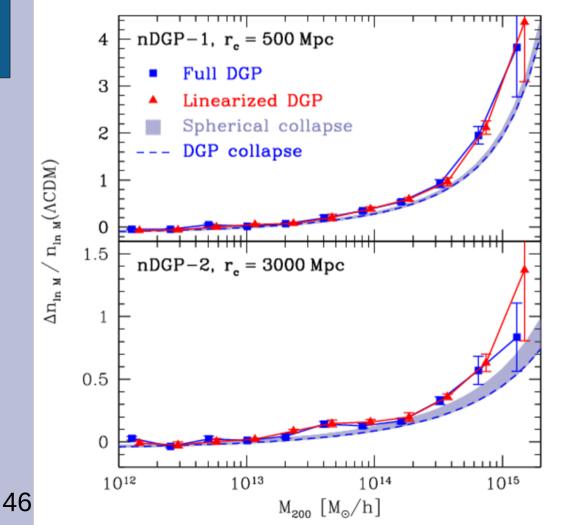


nDGP: relative deviation of dn/dln M from Λ CDM

Order unity enhancement at cluster masses

Halo mass function in DGP

Spherical collapse + Sheth-Tormen mass fct.



nDGP: relative deviation of dn/dln M from Λ CDM

Order unity enhancement at cluster masses ~ $10^{14} M_{o}$

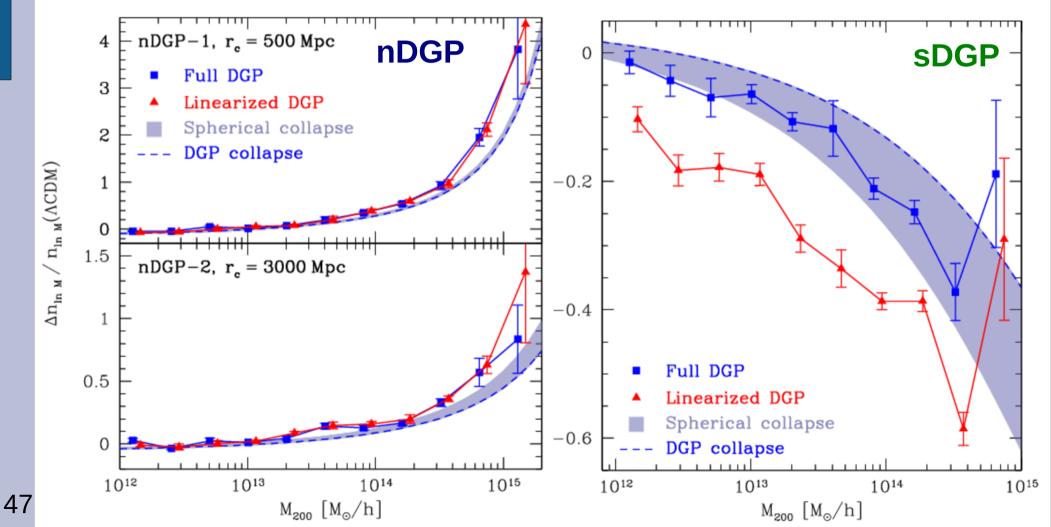
Spherical collapse

- range between "full" and no Vainshtein mechanism

FS, et al. 08, FS, Hu, Lima 09

Halo mass function in DGP

Spherical collapse + Sheth-Tormen mass fct.



Halo Density Profiles

- No strong DGP
 100
 effects in inner cores
 - Scale radius r_s unchanged
 - Cores formed early
- Some effects in infall region
 - at few R₂₀₀

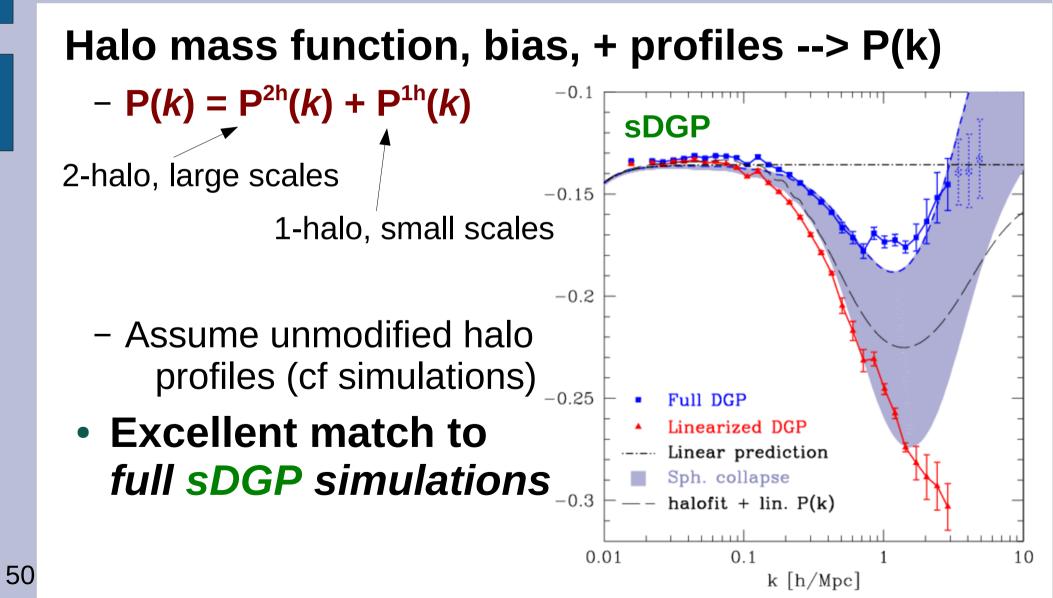


Halo model power spectrum

Halo mass function, bias, + profiles --> P(k) $- P(k) = P^{2h}(k) + P^{1h}(k)$ 2-halo, large scales 1-halo, small scales

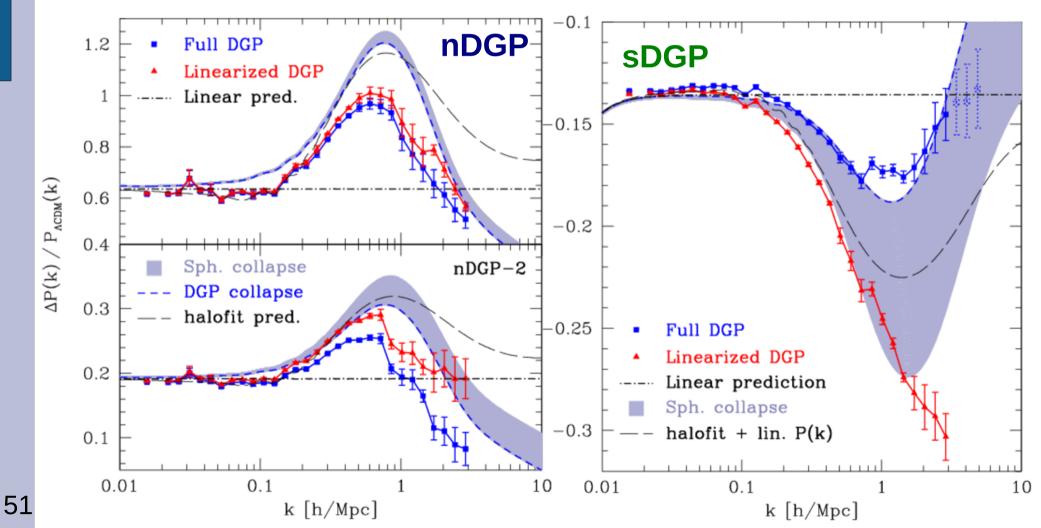
 Assume unmodified halo profiles (cf simulations)

Halo model power spectrum



Halo model power spectrum

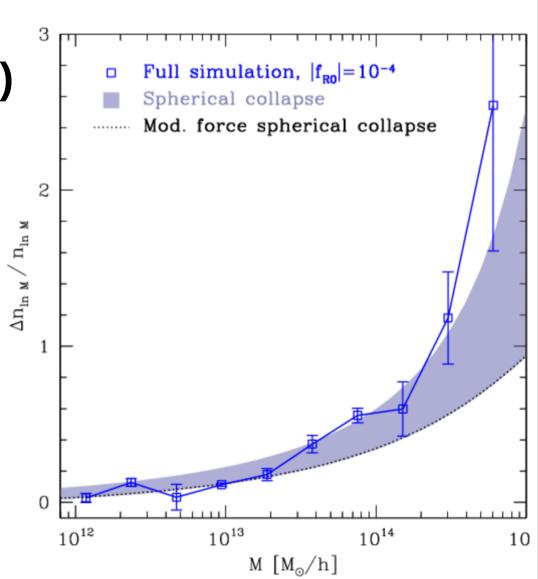
Halo mass function, bias, + profiles --> P(k)



Application: constraining f(R) with Cluster Abundance

- Mass function enhancement in f(R)
 - $-f_{R0} = 10^{-4}$
- Spherical collapse predictions
 - Conservative: Lower bound on f(R) effects

FS et al. 08 FS, Vikhlinin, Hu 09



Application: constraining f(R) with Cluster Abundance

- X-ray clusters
 - ROSAT survey + Chandra followup
- Observable: N(>M₀)
- Treat f(R) effect as effective σ_{g} enhancement
 - No expensive recomputation of cluster likelihood
 - Neglect information in shape of f(R) enhancement
- CMB constrains primordial normalization
 - SN, H₀, BAO break parameter degeneracies

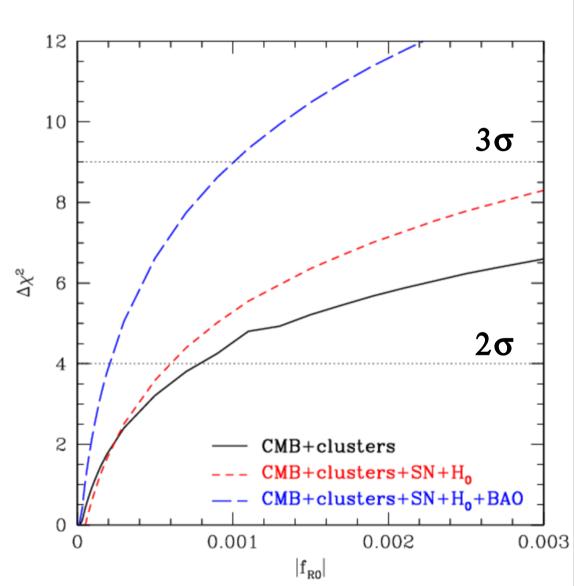
Application: constraining f(R) with Cluster Abundance

 Marginalized constraints (95% CL):

 $|f_{R0}| < 1.3 imes 10^{-4}$

- cf. CMB, SN, g-ISW: $|f_{R0}| < O(0.1)$
- Reach of 5th force: $\lambda_C \lesssim 40 \; \mathrm{Mpc}$

54 FS, Vikhlinin, Hu 09



Room for Improvement

- Dominant observational systematic: cluster mass scale
 - $\sigma(M)$ = +-9% --> $|f_{R0}| < 3 \times 10^{-4}$ incl. syst.
- Uses only low-z sample, ~30 clusters
- Simple model...
 - Ignore f(R) effects on dynamical mass (up to 30%)
 - Using "less conservative" collapse parameters:

 $|f_{R0}| \lesssim 4 imes 10^{-5}$

• **Modified Gravity:** fundamental alternative to *Dark Energy*

- **Modified Gravity:** fundamental alternative to *Dark Energy*
- Understanding structure formation in non-linear regime crucial
 - prove viability of models and place constraints

- **Modified Gravity:** fundamental alternative to *Dark Energy*
- Understanding structure formation in non-linear regime crucial
 - prove viability of models and place constraints
- Simulations of modified gravity are opening the door to probing gravity on Mpc scales

- Modified Gravity: fundamental alternative to Dark Energy
- Understanding structure formation in non-linear regime crucial
 - prove viability of models and place constraints
- Simulations of modified gravity are opening the door to probing gravity on Mpc scales
 - Full simulations of DGP and f(R) now done
 - In progress: understanding non-linear mechanisms generic in modified gravity

- First self-consistent simulations of DGP model:
 - Simple *spherical collapse model* seems to capture main effects

- First self-consistent simulations of DGP model:
 - Simple spherical collapse model seems to capture main effects
- Physical model + calibration with simulations --> observational constraints
- Using X-ray clusters, linear regime constraints on f(R) improved by ~1000

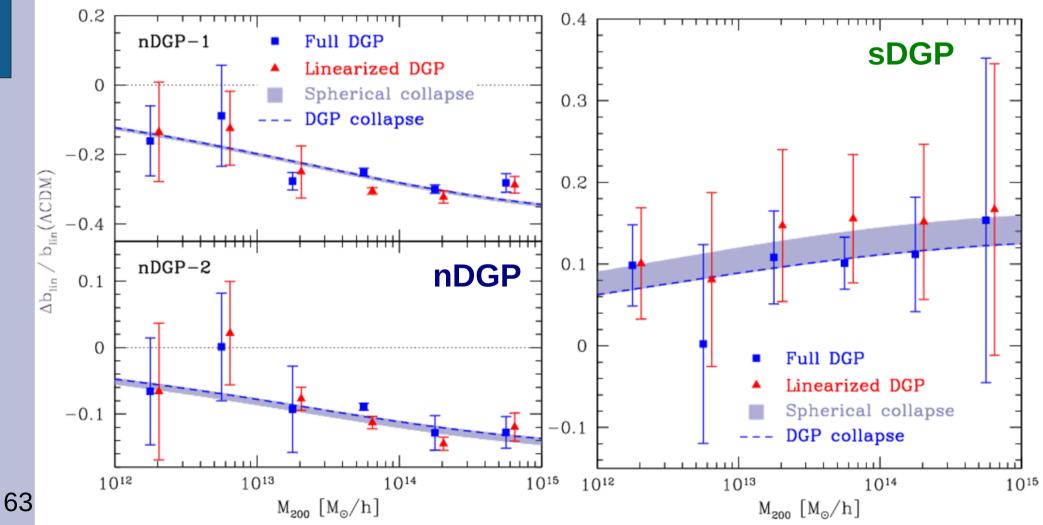
• Linear collapse threshold δ_c

	Collapse type/Model:	sDGP	nDGP-1	nDGP-2
δ_c	GR	1.662	1.674	1.674
	DGP	1.627	1.687	1.688
	DGP lin.	1.676	1.678	1.672
$\Delta_{\rm vir}$	GR	399.9	372.3	372.3
	DGP	467.1	300.4	322.8
	DGP lin.	436.4	311.7	339.1

• Virial overdensity Δ_{vir}

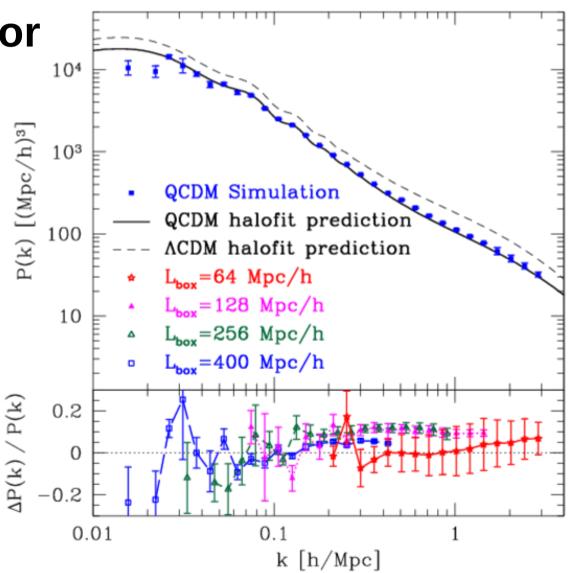
Spherical Collapse + Sheth-Tormen prescription

Halo bias



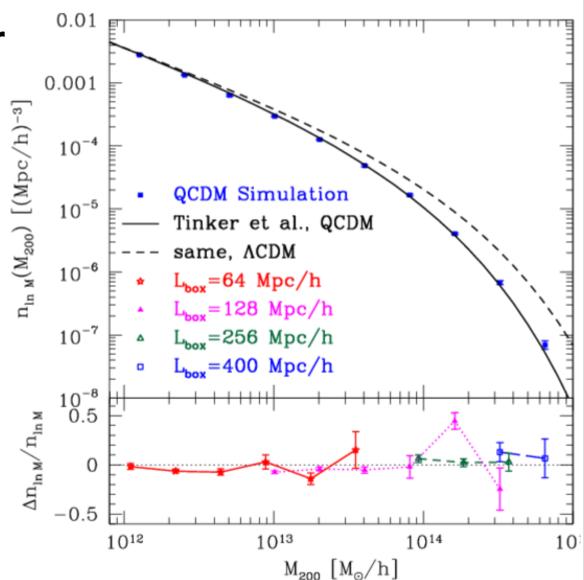
Matter power spectrum

- Power spectrum for GR (QCDM)
- Cross-check with standard fitting formulas
 - Smith et al.



Halo mass function

- Mass function for GR (QCDM)
- Cross-check with standard fitting formulas
 - Tinker et al.

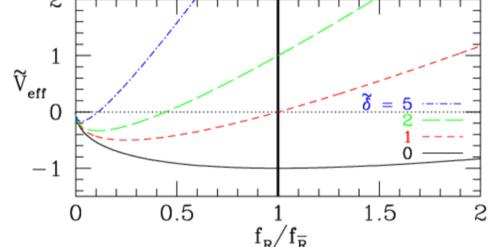


Evading Solar System Tests: Chameleon Mechanism in f(R)

Scalar field *f_R* with density-dependent potential:

$$\nabla^2 f_R = \frac{\partial \tilde{V}_{\text{eff}}(f_R, \rho_m)}{\partial f_R}$$

Khoury & Weltman, PRD, 2004 Hu & Sawicki, arXiv:0705.1158

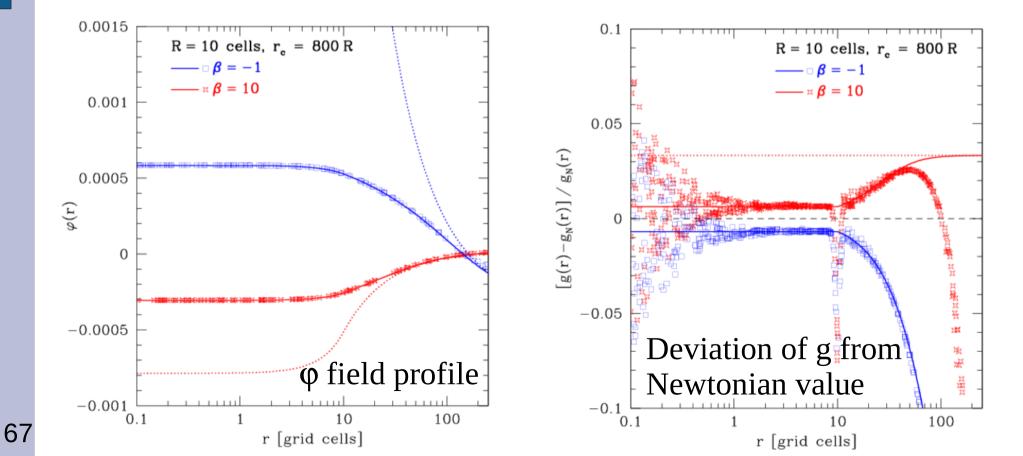


GR restored in high-density environments

– Chameleon operates when background field small enough: $\overline{f_R} \sim \Psi \lesssim 10^{-5}$

Code Tests

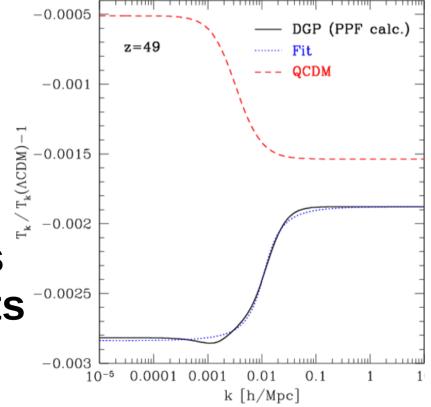
- Spherical mass (top-hat profile):
 - Compare with analytical solution



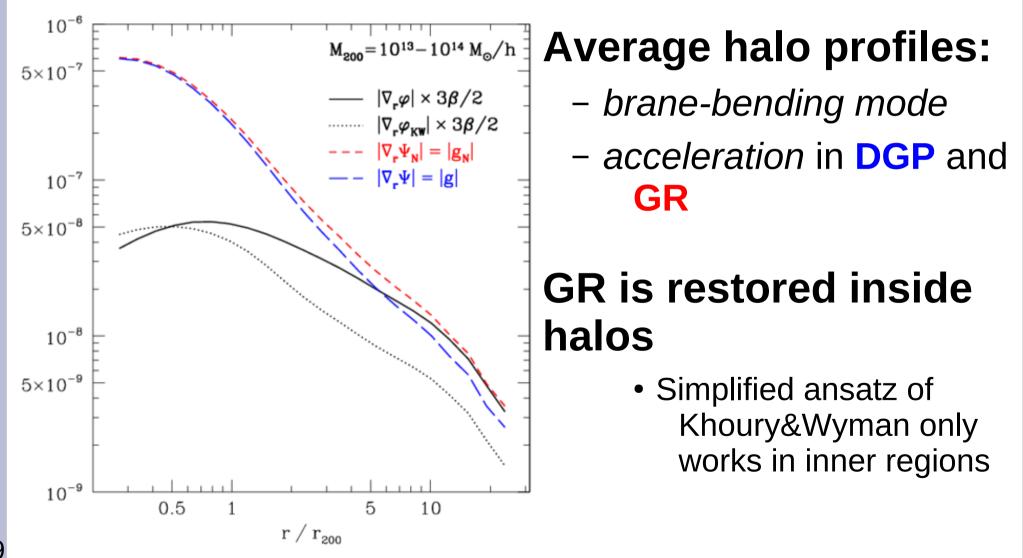
Cosmology: initial conditions

• At initial redshift (z = 49):

- Density: Gaussian random field according to linear power spectrum
- Generate particle positions, velocities using Zel'dovich approximation
- Correct initial conditions for early-time DGP effects



Results: Nonlinear suppression of brane-bending mode



Constraining f(R) from cluster abundance

Constraints marginalized over h,A

