Cosmological simulations of galaxy formation

Joop Schaye (Leiden) (Yope Shea)

Cosmological hydro simulations

- Evolution from z>~100 to z ~< 10 of a representative part of the universe
- Expansion solved analytically and scaled out
- Initial conditions from the CMB & LSS
- Boundary conditions: periodic
- Components: cold dark matter, gas, stars, radiation (optically thin)
- Discretizaton: time, mass (SPH) or length (AMR)
- · Gravity and hydro solvers (and MHD, RT, ...)
- Sub-grid modules are a crucial part of the game

Subgrid models

Cosmological simulations

- 10^{-8} interparticle distance in stars
 - 10° interparticle distance in ISM
 - 10^2 interparticle distance in IGM
 - 10¹¹ stellar radii

Length Scales (cm)

- 10¹⁸ interstar distance
- 10^{20} star clusters
- 10²² galaxies
- 10^{24} clusters of galaxies
- 10²⁸ observable universe

Zooming into a massive galaxy at z=2: Gas density

Depth: 2 Mpc/h

Log M = 12.6 Log M* = 11.5

Simulation: OWLS REF L025 N512

25 Mpc/h

Where to put the gap?

Transition from warm (T ~ 10^4 K) to cold, molecular (T << 10^4 K) ISM expected at $\Sigma_H \sim 10 M_{\odot} pc^{-2}$ ($n_H \sim 10^{-2} - 10^{-1} cm^{-3}$ in warm phase).

- Determined by (dust) column needed to shield UV
- Associated with sharp reduction in Jeans scale \rightarrow star formation
- Threshold decreases with metallicity and increases with UV

(JS 04, Gnedin+ 09, Krumholz+ 09, 11, Gnedin & Kravtsov 11, Feldmann+ 11, Glover & Clark 12, Clark & Glover 13, ...)

Well-posed challenge:

Resolve the Jeans scales in the warm ISM

Basic resolution requirements

- Convergence requires resolving the Jeans scales: $M_{\rm J} \approx 1 \times 10^7 \, h^{-1} \, {\rm M}_{\odot} f_{\rm g}^{3/2} \left(\frac{n_{\rm H}}{10^{-1} \, {\rm cm}^{-3}} \right)^{-1/2} \left(\frac{T}{10^4 \, {\rm K}} \right)^{3/2}$ $L_{\rm J} \approx 1.5 \, h^{-1} \, {\rm kpc} \, f_{\rm g}^{1/2} \left(\frac{n_{\rm H}}{10^{-1} \, {\rm cm}^{-3}} \right)^{-1/2} \left(\frac{T}{10^4 \, {\rm K}} \right)^{1/2}$
- Resolving the warm phase requires:
 - Particle mass << $10^7 M_{\odot}$
 - Spatial resolution << 1 kpc
- Resolving gas with $n_{H} \sim 10^{1} \text{ cm}^{-3}$ and T $\sim 10^{2} \text{ K}$ requires :
 - particle mass << $10^3 M_{\odot}$
 - spatial resolution << 10 pc
 - Radiative transfer
 - Complex chemistry

But we are about to cross the gap in simulations of individual galaxies!

<u>Subgrid models for</u> <u>cosmological hydro simulations</u>

- Radiative cooling/heating
- Star formation
- Chemodynamics/stellar evolution
- Galactic winds driven by feedback from SF
- Black holes and AGN feedback
- Less conventional things. E.g.:
 - Turbulence (incl. mixing)
 - Cosmic rays
 - Dust

Radiative cooling

- Standard assumptions:
 - H & He in photo-ionisation equilibrium (optically thin, UV background only)
 - Metals in collisional ionisation equilibrium (though many studies still assume primordial abundances!)
- Recent developments (e.g. Wiersma, JS & Smith '09; Shen+ '10; Vogelsberger+ '13, Aumer+ '13):
 - Metals also in photo-ionisation equilibrium
 - Relative abundance variations
- Cutting edge/future:
 - Non-equilibrium ionization
 - Radiative transfer
 - Local radiation sources
 - Molecules
 - Dust

Cooling: effect of non-equil. and photo-ionisation

 $n_{H}=10^{-4}$ cm⁻³, z=1, Z=Z_{\odot}

Oppenheimer & JS (2013a)

<u>Cooling: effect of non-equil. at T < 10⁴ K</u>

 n_{H} =10⁻⁴ cm⁻³, T = 10⁴ K, z=1, Z=Z_☉

Oppenheimer & JS (2013b)

AGN proximity zone fossils

Most intergalactic metals may reside in out-of-equilibrium AGN fossil zones!

Galactic winds driven by SF

- Winds may be:
 - Energy-driven
 - Momentum-driven
 - Both
- Sources of energy/momentum:
 - Supernovae
 - Radiation pressure:
 - On dust
 - From photo-ionisation
 - From trapping of Lya
 - Stellar winds
 - Cosmic rays
 - Combination of the above

Galactic winds driven by SF: WARNINGS

- Efficient feedback is required to match observations
- Feedback is often inefficient due to the numerical implementation...
- ... but inefficient feedback is sometimes interpreted as a need for different physical processes
- Nearly all implementations are extremely crude (e.g. radiation pressure w/o radiative transfer)
- At the current resolution, the different feedback processes are hardly distinguishable
- Many hydro simulations use tricks that make them more like SAMs than you may think. E.g.:
 - Wind velocity depends on halo mass or dark matter velocity dispersion (e.g. Okamoto+, Davé/Oppenheimer+, Viel+, Vogelsberger+)
 - Temporarily turn off hydro for winds (e.g. Springel/Hernquist, Davé/Oppenheimer, Viel, Vogelsberger)
 - Temporarily turn off radiative cooling (nearly everyone else)

Implementing FB: recognized problems

<u>Simplest recipe</u>: star particles inject thermal energy into surroundings (e.g. Katz+ '96) <u>Recognized problems</u>:

- Much of the mass in the ISM is in the cold phase (T \prec 10 4 K)
- Simulations do not model cold phase
 - \rightarrow intercloud density too high
 - \rightarrow cooling rate too high
 - \rightarrow feedback too inefficient
 - \rightarrow SF insufficiently clustered
 - \rightarrow feedback too inefficient

Driving winds: brute force solution

- Allow for a cold phase
- Increase SF threshold (only sensible for cold phase)
- Still require subgrid recipe, but on smaller scale

Problem: need very high resolution

- → Can only model a small number of galaxies (zoomed simulations)
- \rightarrow Need to pick initial conditions (e.g. merger history)

(e.g. Ceverino & Klypin '07, Hopkins+ '12, Ceverino+ '13)

Driving winds: subgrid recipes

- Multiphase particles (e.g. Marri & White '93, Scannapieco, Murante, Aumer/White)
- Suppress cooling by hand (e.g. Gerritsen '97, Thacker, Stinson/Brook/Gibson/Governato/Maccio/Mayer/Wadsley/...)
- Inject momentum (i.e. kinetic feedback) (e.g. Navarro & White '93, Springel/Hernquist, Davé/Oppenheimer, Teyssier, OWLS/GIMIC, Vogelsberger, ...)
 - Most relevant advantage: can decrease initial mass loading
- Temporarily decouple winds from the hydrodynamics (e.g. Springel/Hernquist '03, Davé/Oppenheimer, Viel, Vogelsberger, ...)
- Multiple feedback processes (e.g. Hopkins+, Stinson+ '13, ...)

Implementing FB: less recognized problems

- Reality: SNe (or BHs) inject lots of energy in very little mass
 - \rightarrow High temperatures
 - \rightarrow Long cooling times
 - \rightarrow Efficient feedback
- Simulations: inject energy in large gas mass
 - \rightarrow Low heating temperatures
 - \rightarrow Short cooling times
 - \rightarrow Inefficient feedback

e.g. Kay+ '03; Booth & JS '09; Creasey+ '11; Dalla Vecchia & JS '12

Implementing FB: less recognized problems

- The SNII of an SSP of mass m_* can heat a mass $m_{g,heat}$ by $\Delta T = 4 \times 10^7 \text{ K} (m_*/m_{a,heat})$
- Reality: $m_* \gg m_{g,heat}$ initially $\rightarrow \Delta T \gg 10^8 \text{ K}$ $\rightarrow t_c \gg 10^8 \text{ yr} (n_H/1 \text{ cm}^{-3})^{-1}$
- In simulations: $m_* \sim 0.01 0.1 m_{g,heat}$ $\rightarrow \Delta T \sim 10^6 K$
 - \rightarrow t_c ~ 10⁵ yr (n_H/1 cm⁻³)⁻¹
 - \rightarrow overcooling
- Note that in SPH simulations (m*/ m_{g,heat}) is independent of resolution!

Dalla Vecchia & JS (2012)

Implementing thermal FB: requirements

 FB only efficient if heated resolution elements expand faster than they cool radiatively:

 $t_c \gg t_s = h/c_s$

where h is the spatial resolution

- Adiabatic expansion does not change t_c / t_s (assuming Brehmsstrahlung)
- Required T depends on density and resolution

$$\frac{t_{\rm c}}{t_{\rm s}} = 2.8 \times 10^2 \left(\frac{n_{\rm H}}{1 \,\,{\rm cm}^{-3}}\right)^{-1} \left(\frac{T}{10^{7.5} \,\,{\rm K}}\right) \left(\frac{h}{100 \,\,{\rm pc}}\right)^{-1}$$
$$\frac{t_{\rm c}}{t_{\rm s}} \simeq 98 \left(\frac{n_{\rm H}}{1 \,\,{\rm cm}^{-3}}\right)^{-2/3} \left(\frac{T}{10^{7.5} \,\,{\rm K}}\right) \left(\frac{\langle m \rangle}{7 \times 10^4 \,\,{\rm M_{\odot}}}\right)^{-1/3}$$

Dalla Vecchia & JS (2012)

Implementing efficient thermal FB:

- ΔT determined by resolution
- Stochastic FB
 - → given ΔT , fraction of available energy that is injected, f_{th} , determines heating probability
- f_{th} not predicted, unresolved thermal losses need to be calibrated

Dalla Vecchia & JS (2012)

Mass outflow rate: 10¹⁰ Mo halo

- Particle mass $7 \times 10^2 \text{ M}_{\odot} \rightarrow \frac{t_{\text{c}}}{t_{\text{s}}} \cong 5 \times 10^2 \left(\frac{n_{\text{H}}}{1 \text{ cm}^{-3}}\right)^{-2/3} \left(\frac{\Delta T}{10^{7.5} \text{ K}}\right)$
- Max $n_H \sim 10^2 \text{ cm}^{-3} \rightarrow \text{insensitive to } \Delta \text{T for } \Delta \text{T} \geq 10^{6.5} \text{ K}$

10¹⁰ Mo halo, edge-on, gas density

$\Delta T = 10^{6.5} \text{ K}$

5	N	5	3	5	x	x				1		1			1				2	7	7	7		e.	7	7
×	\$	\$	ъ.	ъ.	ъ.	ъ.														*		1	\mathbf{z}	1	₹.	1
κ.	s.	s.	х	5	s.	×.	5																z.	1	z	1
ж.	~	~		κ.	х.	\$																	\mathbf{r}			<i>.</i> ,
κ.	ς.	×	×	ς.	ς.	κ.		γ.															÷	1	,	1
λ.																						4		÷.		
4	ς.	4	ς.	ς.																				4	2	1
		4																								-
4	4	4	ι,																					-	2	2
_	_	_	_																			_	_	_	2	_
1	2	1																				÷.		Ĺ.	<u> </u>	-
_	_	_		_																		_	_	_	_	-
<u> </u>																										
													1													
													100	1												
	T.																								1	
	-	-																						-	-	-
-			Ĩ.	Ĩ.,	1																				Ĩ.,	
-	•																							Ĩ.,	-	-
Ξ.	1	T	Ĩ	-				1		1									•	1					7	
																										-
٠	1	1	1	1	1	1	1	1									1	<u> </u>					<u></u>	٦.	٦.	-
1	1	1	1	1	1	1	1	1									1	1		1				٦.	٦.	2
1	1	1	1	1	1	1	۲	1	f									٠.	•	1	Ĩ	٦.	٦.	٦.	٦.	2
1	٢.	1	1	1	1	1																	٦.	٠.	٦.	7
٢	٢	1		1		1															`	`	`	2	`	•
٢	1	1	1	1			1															1	1		2	2
1	4	1	1	4	4	4												3				`		2	١.	2
1	4	1	4	4																¥	*			N.,	1	2
4	C	ł	1	4	4	1	4	4				Ļ	4	Ļ	ł.			¥.	\$	Y	*	¥	•	×.	¥	2

- 17.5 kpc/h-

 $\Delta T = 10^{7.5} \text{ K}$

Δ.	5	5	5	- 5	з.	3				3		5	Ţ	1	E.		1		1				₹.	7	1	1	1	7	1
ъ.	ъ.	*		-5									1												\mathbf{r}		1	*	*
ж.	κ.	\sim																								1	1	1	1
ч.																													-
ς.	ς.	ς.	ς.	ς.	ι.	ι.							Ŧ							Ŧ							2		-
2	4	1		4	÷.	1	÷.								÷.						÷.	<u>,</u>	2	÷.	<u>_</u>	2		े जन	
		1	1	1																		÷.					1		
																													Ť.
																									1				-
		Ĩ			1		1				٠.	1													1	1		1	-
•												1																	
														1.	80														
																	ς.												
-	-																				ς.							~	~
-	-												÷				÷.	÷.	1										
-																	ς.	ς.	1							ς.			
												1			1	1	1	1	÷.	1	1		_	_			2		
<u> </u>	2	1	2		÷.	Ľ.	1	1	1	1					1	÷.	<u></u>	1	Ĵ	÷.			2	2	2	2	2		
Ĩ.	Ĩ.	1			Ĩ.	1	Ċ.	Ċ.			1	1			+	ł	4	7)	2									
1	1	1	1	1	~	1	1	1	1	4	1	1	f	+	+	Ŧ	1	ł	÷	•	¹	Ť			-		Ĩ.	`	
1	1	1	1	1	×	1	4	1	1	1	4	1		+	•	Ŧ.	Ŧ	ł	+	•	•	•	`	Ì	<u></u>	•	<u></u>		7
1	1	1		1				*		*						t	ł	1	÷		*	7			2	•	2	2	~
1	4	1	4	4	4	1	4	1	4	4	4	4		4			ŧ.	1	\$	¥.	N.	\$	¥	x	×	¥	\mathbf{r}	N	1

<u>Mass outflow rate: 10¹² Mo halo</u>

- Particle mass 7×10⁴ $M_{\odot} \rightarrow \frac{t_c}{t_s} \approx 1 \times 10^2 \left(\frac{n_H}{1 \, \mathrm{cm}^{-3}}\right)^{-2/3} \left(\frac{\Delta T}{10^{7.5} \, \mathrm{K}}\right)$
- Max $n_H \sim 10^3 \text{ cm}^{-3} \rightarrow \text{insensitive to } \Delta T \text{ for } \Delta T \geq 10^{7.5} \text{ K}$

10¹² Mo halo, edge-on, gas density

 $\Delta T = 10^{6.5} \text{ K}$

															-*	هر:	
									~								
					~		~		5		i *						
								~									
										•							
				* * * * * * * * * * * * *													
1				* * * / * * * / * / * * * * *													
				* * / / / / / / / / / / / / / /													

45 kpc/h

 $\Delta T = 10^{7.5} \text{ K}$

Dalla Vecchia & JS (2012)

Self-regulated galaxy formation

- Feedback too weak compared to accretion
 - >Gas density increases
 - >Star formation /BH growth rate increases
 - >Feedback increases
- Feedback too strong compared to accretion
 - >Gas density decreases
 - Star formation/BH growth rate decreases
 Feedback decreases

Consequences of self-regulated GF

Outflow rate is determined by inflow rate. Hence, it is independent of:

- SF law
 - > SFR independent of SF law
 - SF law determines the amount of gas that is involved in SF ("gas fraction")

Varying the SF law: SFR(M)

Haas, JS, et al. (2013a)

Varying the SF law: Gas fraction

Haas, JS, et al. (2013a)

Consequences of self-regulated GF

Outflow rate is determined by inflow rate. Hence, it is independent of:

- SF law
 - > SFR independent of SF law
 - SF law determines the amount of gas that is involved in SF ("gas fraction")
- SF feedback efficiency
 - SFR, and hence M*, inversely proportional to efficiency of SF feedback
- AGN feedback efficiency
 - BH accretion rate, and hence M_{BH}, inversely proportional to efficiency of AGN feedback
 - > SFR independent of AGN feedback efficiency

Varying the efficiency of AGN feedback

Self-regulation on scale of DM haloes! (Booth & JS 2010, 2011)

Booth & JS (2009)

The effect of baryons on the distribution of matter

McCarthy, JS+ (2011)

The effect of baryons on the distribution of matter

← 10 Mpc/h ----->

McCarthy, JS+ (2011)

Group gas and stellar contents

McCarthy, JS+ (2010)

Optical vs X-ray luminosity

Stott+ (2012)

Baryons and the matter power spectrum

Baryons and the matter power spectrum

<u>Biases due to galaxy formation</u> for a Euclid-like weak lensing survey

Galaxy formation provides a challenge (target?) for weak lensing

Semboloni+ (2011)

Two and three point statistics

Semboloni, Hoekstra, JS '13

Euclid w_o marginalised

Two and three point statistics

Semboloni, Hoekstra, JS '13

Cosmic shear

- Baryonic effects can be dramatic (bias for Euclid ~10s of per cent if untreated)
- Power spectrum affected up to very large scales (k > 0.3 h/Mpc)
- Impact on bispectrum even higher
- Effects dominated by gas ejection

 → Underestimated by models suffering from overcooling
 → Calibration should use gas rather than star fractions
- Modified halo models can capture most of the effects, but currently use input from simulations

What next for galaxy simulations?

- Resolve cold ISM down to 10² K in individual (dwarf) galaxy
- Non-equilibrium chemistry including molecules
- Radiation-hydrodynamics

What next for cosmological simulations?

Evolution and Assembly of Galaxies and their Environments

- 100 Mpc volume
- 2x1504³ particles
- To z = 0
- Resolves warm ISM
- Subgrid recipes dependent only on local hydro quantities
- Feedback efficiency calibrated to match mass function

