

Calibrating shear with CMB lensing Gas physics from the kSZ effect

Emmanuel Schaan Princeton University

Primary anisotropies — Only one CMB sky

• Linear physics: acoustic waves

- Gaussian statistics (<~10⁻³ from Planck)
- **Primary anisotropies measured to ~ cosmic variance** with Planck (But number of relat. species, primordial gravitational waves...)

Large-scale structure: Tantalus's ordeal

Gigantic statistical power, but...

 $N_{\text{modes}} \propto (k_{\text{max}}/k_{\text{min}})^3 \text{ versus } (l_{\text{max}}/l_{\text{min}})^2$

Non-linear physics

larger perturbations but harder to predict

Non-Gaussian statistics

larger Shannon info but harder to extract

Complex baryonic effects

biasing, star formation and feedback

Complex observables

often systematics-limited

Not this talk...

Statistics: Non-Gaussian covariances for n-point functions and halo counts ES Takada Spergel 14, PRD, <u>1406.3330</u>

Non-linearities: EFT of the large-scale structures
Baldauf ES Zaldarriaga 15a,b, JCAP, 1505.07098, 1507.01583

Baryons: First detection of the <P_{Ly α}K_{CMB>} bispectrum Doux ES+14, PRD?, $\frac{1607.03625}{1607.03625}$

Please come talk to me!

Collaborators

arXiv:1607.01761

Elisabeth Krause

Tim Eifler

Olivier Doré

Hironao Miyatake

Jason Rhodes

David Spergel

Weak gravitational lensing

Galaxy lensing

perfect disk shear ~1% shape ~20% → SNR~5% for one galaxy, SNR~10³ with 10° galaxies

CMB lensing

Arcmin deflections, coherent on degree scale Smoothed peaks, extra power, E→B, correlates modes

Complementary with clustering

geometry+growth tests of GR: $\Psi+\Phi$ versus Φ probes all the mass biasing issue

Shear calibration: the case for redundancy

$$< e> = (1 + m) \gamma_{\mathrm{true}} + \alpha \, e_{\mathrm{PSF}} + c$$
 Heymans+06 Taylor Kitching 16

Scary: m(z) degenerate with growth, hence dark energy EOS

"Required" for LSST: < 0.5% (Huterer+06, Massey+12, Schaan+16)

Image simulations: 3-5% DES (Jarvis+15), 1% KiDS (Fenech-Conti+16)

Difficult:

- Noise/Model biases
- Selection bias: simulate below the detection limit (Hoekstra+15)
- Mode coupling: simulate below the image resolution
- PSF size error
- → Redundancy is valuable

Shear calibration with CMB lensing

Principle:

Vallinotto12,13, Das+13

$$\kappa_{gal} \sim (1+m) \sigma_8$$

$$\kappa_{CMB} \sim \sigma_8$$

Value:

Purely empirical, <u>self</u>-calibration

No assumption on galaxy population/morphologies

Just the beginning!

Liu+16, Baxter+16, Miyatake Madhavacheril+16, Singh+16

~10-20% calibration, (mostly) fixed cosmology & nuisances

Questions:

Competitive with image simulations / requirements?

Varying cosmology & nuisance?

Robustness to photo-z, IA?

What combination is best?

8.4m telescope in Chile

Survey starts 2022-23

~ half the sky

Sources: 26 arcmin⁻²

Lenses: redmagic-like

 $18,000 \text{ deg}^2$, $26 \text{ sources/arcmin}^2$, $0.25 \text{ lenses/arcmin}^2$, shape noise = 0.26

 $\sigma_z/(1+z) = 5\%$ for sources, known to 0.2% for sources

 $\sigma_z/(1+z) = 1\%$ for lenses, known to 0.06% for lenses

CMB Stage 4

Stage 4: ~500,000 detectors

Beam: 1'

Sensitivity: 1µK'

$$I_{min}=30$$
,

 $I_{\text{max,T}} = 3000, I_{\text{max,E,B}} = 5000$

Foreground cleaned input map

Assumed no systematics

Forecast

- Data: all combinations of {g, K_{gal}, K_{CMB}}
- Constrain: cosmology, b_i , m_i , Δ_{zi} , σ_z No prior on b_i , m_i . Priors on Δ_{zi} , σ_z .
- Realistic/conservative:
 - Full non-Gaussian covariances Explore likelihood with MCMC
- Built on CosmoLike (Eifler Krause+14)
 Extended to include CMB lensing
 Soon to be public!

Shear alone/LSST alone:

Self-calibration to ~2% Relies on mildly non-linear scales

Schaan+16

Lensing-lensing correlations:

- requires auto spectra
- IA always present
- fixed angular scale ← arbitrary small physical scales

Schaan+16

Tracer-lensing correlations:

- + no lensing auto
- + fairly insensitive to cosmology (distance ratios)
- + no IA if perfect photo-z
- + fixed angular scale ← **not** arbitrary small physical scales

CMB S4 lensing can calibrate the shear ~ requirements

while varying cosmo & nuisance params better at high z where most challenging purely empirical, self-calibration

Robustness

• IA contamination:

Unaccounted IA in the data produce $< 1\sigma$ bias in m_i , without mitigation

Non-linearities/baryons:

Varying I_{max} beyond 1000 does not affect m_i much

Wider photo-z errors:

Weakening prior on photo-z only weakens m_i constraints in the lower z-bins

CMB S4 specs:

 m_i constraints are sensitive to noise, but not much to I_{max} or resolution

→ possible with AdvACT, SPT-3G

Summary: Shear calibration with CMB lensing

arXiv:1607.01761

- CMB S4 lensing can constrain the shear bias to 0.5%
 LSST requirements
- Purely empirical, self-calibration, no assumption on galaxy population/morphologies
- Works best at high z where most difficult
- Possible with AdvACT, SPT-3G, Simons Observatory
- Robust to IA, photo-z degradation, non-linearities & baryons, CMB S4 specs
- In the works: "delensing" with CIB, iterative reconstruction, photo-z outliers, correlated mi

Collaborators

arxiv:1510.06442

Simone Ferraro Mariana Vargas-Magaña

Kendrick Smith

Shirley Ho

David Spergel

Nick Battaglia

Gas in clusters & galaxy formation

→ Measuring gas profile and abundance can constrain feedback mechanisms

Kinematic Sunyaev-Zel'dovich effect

$$\frac{\delta T}{T} = \int \mathrm{d}l \, n_e \sigma_T \, \frac{v}{c}$$

Hand et al 2012 aps.org, ESO, ESA, Hubble, NASA

Counts all free electrons

Lower mass halos at higher z

Small size: $\delta T_{\rm kSZ} \sim 0.1 \mu {\rm K}, \delta T_{\rm CMB} = 110 \mu {\rm K}$

Blackbody spectrum

Handle on v?

Detection methods

Individual (monster) cluster

Sayers+13, 14

Pairwise velocities

Hand+12, Planck15, Soergel+16, de Bernardis+16

Velocity reconstruction

Planck15, ES Ferraro+16

<T² x tracer>, Hill+16, Ferraro+16

T Power spectrum, George Reichardt+14

T² power spectrum, Smith Ferraro 16

Peculiar velocity
$$\vec{v} = \frac{d\vec{r}}{dt} - H_{(t)}\vec{r} = \frac{d\vec{x}}{d\eta}$$

Mass conservation + linear approx.

$$\dot{\delta} + \vec{\nabla} \cdot \vec{v} = 0 \implies \vec{v} = -aHf \vec{\nabla} \Delta^{-1} \delta$$

$$\rightarrow v_{\text{rms 1d}} \sim 300 \text{ km/s}$$

Padmanabhan et al. 2014

$$\vec{v} = -aHf \; \vec{\nabla} \Delta^{-1} \delta$$

BOSS CMASS South DR11 footprint (sdss.org)

$$\vec{v} = -aHf \; \vec{\nabla} \Delta^{-1} \delta$$

$$\vec{v} = -aHf \; \vec{\nabla} \Delta^{-1} \delta$$

"Halos" from BOSS CMASS

25,000 CMASS DR10 galaxies, 0.4<z<0.7

Central fraction 85%

Stellar masses $M_* \sim 2 \times 10^{11} M_{\odot}$ $M_{\rm halo} \sim 2 \times 10^{13} M_{\odot}$ $\theta_{\rm vir} \sim 1.5 {\rm arcmin}$

Reconstructed velocities (K. Smith, M. Vargas-Magaña, S. Ho)

 \rightarrow T and v_{rec} for each halo

Temperatures from ACTPol

Map at 148GHz
Area 600 sq. deg.
Noise 12muK.arcmin
Beam FWHM 1.4arcmin
Aperture photometry

→ δT for each halo

Baryon abundance & profile

$$\rightarrow \alpha = \frac{\langle \delta T_{(\theta_{\text{disk}})} \times \tau v_{\text{rec}} \rangle}{\langle \tau v_{\text{rec}} \times \tau v_{\text{rec}} \rangle}$$

 $\alpha \approx 0 \Leftrightarrow \text{no detection}$ $\alpha \approx 1 \Leftrightarrow \text{cosmological baryon abundance}$ $\text{varying } \theta_{\text{disk}} \to \text{profile information}$

Gas profile of CMASS halos

- \rightarrow kSZ model preferred over null at 3 σ
- → Proxy for gas profile in clusters

Gas profile of CMASS halos

comoving radius at z = 0.57 [Mpc/h] 0.65 0.86 1.08 1.73 1.3 1.51 1.95 2.0 **ACTPol & CMASS** best fit "cumulative electron profile" tSZ residual 1.0 0.5 0.0 -0.5Schaan Ferraro +15 1.5 2.5 3.5 1.0 2.0 3.0

 \rightarrow kSZ model preferred over null at 3 σ

 θ_{disk} [arcmin]

→ Proxy for gas profile in clusters

Future prospects

Tracer sample: SNR ~ (1 to 2) * $(M_h/10^{13}M_{sun})$ * sqrt $(N_{obj}/10^4)$

- this study (CMASS) 3x10⁴ gal, 0.4<z<0.7
- Full CMASS 4x10⁵, 0.4<z<0.7
- PFS 10⁷ gal, 0.8<z<2.4
- DESI $2x10^7$ gal, z<2
- → SNR x 10 from number

CMB map:

- this study (ACTPol) 14muK', 1.4',
- AdvACT 7muK', 1.4', multifreq.
- CMB S4 1muK', ?, multifreq.
- → SNR x few from sensitivity
- → SNR x few from tSZ removal

→ Large SNR: gas profile, 1h/2h, binning in mass/type

Non-thermal pressure / energy injection

$$\begin{cases} kSZ = \tau \left(\frac{v_{e,LOS}}{c}\right) \propto \rho_e \text{ gas density} \\ tSZ = \tau \left(\frac{v_{e,th}}{c}\right)^2 \propto P_{e,th} \text{ gas thermal pressure} \end{cases}$$

Virial theorem:

$$\Phi_{\rm gas+DM/gas} + 3\mathcal{V}\left[< P_{\rm th} > + (< P_{\rm non-th} >) - P_{\rm surface} \right] = 0$$
 kSZ lensing tSZ modeled from accretion rate

- \rightarrow Constrain P_{non-th}, as a function of radius
- → Constrain energy injected?

Summary: kSZ detection & gas physics in clusters

arXiv:1510.06442

- Evidence for kSZ with ACTPol and velocity reconstruction from BOSS
- KSZ powerful baryometer: profile, abundance
- Constrain non-thermal pressure and energy injection with kSZ & tSZ?
- CMB S4 and DESI will multiply the SNR by >10
 → bin in mass/type/color