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Primary anisotropies — Only one CMB sky
Planck Collaboration: Cosmological parameters
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.
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radiation driving

Silk damping

primordial 
fluctuations

acoustic oscillations

• Linear physics: acoustic waves 

• Gaussian statistics (deviations<~10-3, Planck) 

• Primary anisotropies measured to ~ cosmic variance with Planck 
(But primordial gravitational waves, number of relat. species!)



Dark energy? Dark matter? Neutrinos?

• Laboratory experiments: SuperCDMS, LUX/LZ; 
CUORE, MAJORANA, KATRIN, IceCube and many more 

• Standard candles: Supernova Cosmology Project, SNfactory 

• LSS: BOSS, eBOSS, DESI, LSST 
Enormous statistical power  
…But: astrophysics? systematics? non-linearities?



Localizing the baryons with the CMB
Schaan Ferraro Vargas Smith Ho Spergel & ACTPol, PRD, arxiv:1510.06442 
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Figure 4. Baryon density of the non-radiative simulation (no
star formation, feedback or cooling) at z = 0. The same slice as
in Fig. 3 is displayed.

Illustris can also be used to probe the metal content in
gas and stars. Star particles are stochastically formed when
gas reaches densities above a threshold value ⇢sfr. A star
particle is modelled as a single-age stellar population, for
which the mass and metal return will be computed at every
time-step. This material is then distributed over neighbour-
ing gas cells (see Section 2.2 and 2.3 in Vogelsberger et al.
2013). In Fig. 13, we show the evolution of the metals in
gas and stars normalized to the total metal mass at z = 0.
Additionally, the figure shows which fraction of the metals
in gas is residing in haloes, filaments or voids. We find that
at z = 0, 36 % of the metals are locked up in stars and 64 %
of the metals are in gas. Considering only the gaseous com-
ponent, half the metals are within haloes and 28 % reside in
the filaments. The remaining 22 % are located in voids. The
average metallicity of the stars is 1.49 solar metallicities at
z = 0, while the halo gas has about 0.37 solar metallicities
on average. The average metallicity in filaments and voids
is roughly 0.1 times the solar value.

3.3 Baryonic temperature–density relation

An alternative way to look at the distribution of baryons is
to analyse them according to their density and temperature.
This is more directly relevant to observations, as density and
temperature are the important variables for emission and
absorption mechanisms. In Fig. 14, we show the contribu-
tion of gas to the total baryonic mass in a temperature versus
baryon density histogram. For this plot we directly use the
Voronoi cell densities of the gas instead of the averaged den-
sities we used in Section 3.2. We divide the baryons accord-
ing to the same classification as has been used in Davé et al.
(2001): di↵use gas having ⇢ < 1000⇢crit⌦b and T < 105 K,
condensed gas with ⇢ > 1000⇢crit⌦b and T < 105 K, warm–
hot gas with temperatures in the range 105 < T < 107 K

and hot gas with temperatures above 107 K. We refer to the
warm–hot gas also as WHIM.

We find that 21.6 % of the baryons are in the form of
di↵use gas, located mainly in the intergalactic medium. The
tight relation between temperature and density is due to the
interplay of cooling through adiabatic expansion and pho-
toionization heating (see also the discussion in Section 3.3
of Vogelsberger et al., 2012). The condensed gas amounts to
11.2 %. Most of the condensed gas is in a horizontal stripe
around 104 K. As photoionization heating becomes less dom-
inant but cooling time-scales shorten at higher densities, gas
cools e↵ectively down to this temperature. Since there is no
metal and molecular line cooling, 104 K represents an e↵ec-
tive cooling floor for the gas in this phase. The upward ris-
ing slope which extends from the ‘condensed’ region into the
‘WHIM’ region is due to an e↵ective equation of state used
for gas exceeding the density threshold for star formation
(Springel & Hernquist 2003). The warm–hot medium makes
up for 53.9 % of the baryons, while 6.5 % of the baryons are
in hot gas.

The mass in these two categories corresponds to warm–
hot shock-heated gas in haloes and filaments and material
which has been ejected due to feedback from haloes (in-
spection of Fig. 10 shows that the ejected material is in the
temperature range defining the WHIM region). If all the
23.6 % of the ejected material (see Table 2) had remained
in haloes, this would have changed the warm–hot mass frac-
tion to 30 % and increased the condensed fraction to 34.8 %
(plus 6.6 % in stars).

The redshift evolution of the gas phases is given in
Fig. 15, where we see that at high redshift, most of the gas
has been in the form of a rather cold and di↵use medium.
Starting at a redshift of z = 4, and more pronounced after
redshift z = 2, the WHIM phase is gaining more and more
mass, and by redshift zero, ends up containing most of the
baryons.

4 DISCUSSION

Comparing the values of Table 1 with Table 2, we see a
very good agreement at z = 0 between the subfind halo
catalogue and the haloes defined by a dark matter density
cut. This suggests that our method of measuring the mass
using the average dark matter density in a cell of our grid
works reasonably well. However, we see deviations of 5–7 %
for the mass in haloes at redshifts higher than 1. The reason
for these deviations is that at higher redshifts the haloes are
less massive, and thus some fall below the resolution limit
of our grid.

Using the temperature-baryon density classification in
Section 3.3, we find that 53.9 % of the baryons reside in
the WHIM region. This is higher than the 30–40 % found
in the work of Davé et al. (2001), or the work of Cen &
Ostriker (2006), who reported between 40 and 50 % in the
WHIM phase. This discrepancy is most likely due to the use
of di↵erent feedback models. The importance of the feedback
model is further underlined by the di↵erences between the
full physics and the non-radiative runs, which produce a
nearly identical dark matter distribution but very di↵erent
baryon distributions (see Fig. 7). In the full physics run only
half the baryons are within haloes compared to the non-
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Figure 3. Dark matter and baryon density in a thin slice at z = 0. The slice covers the whole (106.5 Mpc)2 extent of the simulation
and has a thickness of 104 kpc (1 cell).

Table 2. Dark matter mass, baryonic mass and volume fraction in haloes, filaments and voids at z=0. The categories have been defined
through dark matter density ranges. We also added a category ‘ejected material’ which corresponds to baryons inside the ‘voids’ region
which have a temperature T> 6 ⇥ 104 K. The spatial regions to which these dark matter density regions correspond to are shown in
Fig. 8.

dark matter density % of total % of total % of total % of total
component region (⇢crit) dark matter mass baryonic mass mass volume

haloes > 15 49.2 % 23.2 % 44.9 % 0.16 %
filaments 0.06 - 15 44.5 % 46.4 % 44.8 % 21.6 %
voids 0 - 0.06 6.4 % 30.4 % 10.4 % 78.2 %

ejected material
0 - 0.06 2.6 % 23.6 % 6.1 % 30.4 %

inside voids

baryons, this ‘ejected material’ region is responsible for most
of the baryons in dark matter voids. In Fig. 9, the spatial
region corresponding to the ejected material is plotted; note
that it fills about 40 % of the voids. We should note though,
that the ejected mass most likely heats some of the baryons
already present in the voids. Therefore, we have probably
overestimated the ejected mass in voids. However, through
following the redshift evolution of the mass in voids we can
give an estimate of the associate uncertainty, as we discuss
below. We note that our findings for the volume fractions
are generally in good agreement with simulations by Cau-
tun et al. (2014).

3.2.3 Redshift evolution of matter and metals in haloes,

filaments and voids

By applying the same dark matter density cuts at di↵erent
redshifts, we can study the time evolution of the values re-
ported in Table 2. This is done in Fig. 12, where we show
how the baryons and dark matter divide into haloes, fila-
ments and voids as a function of time. In Fig. 12 (a) we see
that, starting at redshift z = 2, feedback begins to e�ciently
remove gas from haloes. At first, this only slows down halo

growth, but after a redshift of z = 1, it reduces the amount
of baryons in haloes. In Fig. 12 (b) we see that the dark mat-
ter haloes, una↵ected by feedback, continue to grow at the
expense of the filaments. At high redshifts, the dark matter
was distributed homogeneously with a density of ⌦dm⇢crit,
and thus falls into the ‘filament’ category. The underdense
regions of the voids were only created as matter from less
dense regions was pulled into denser regions. Thus the frac-
tion of dark matter in voids is increasing from z = 6 to 2.
After z = 2, the amount of dark matter in voids is slowly de-
creasing due to accretion on to filaments. The baryons show
a similar behaviour from z = 6 to 2. However, starting at
a redshift of z = 2 ejected material is also transported into
the voids, thus increasing their baryonic content. We see in
Fig. 12 (a) that the mass increase of the ‘ejected material’
is higher than the mass increase of the ‘voids’. The most
likely explanation is that the ejected mass heats gas already
present in the voids, which means that we overestimate the
mass of the ejected material with our density and tempera-
ture cut. If we assume that in the absence of feedback the
baryons would show the same relative decrease from z = 2
to 0 as the dark matter, we would need to correct the value
of the ejected material down to 20 %.
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Haider+16, Illustris simulation
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Baryons = 20% of total matter, 
and spatial distribution is uncertain! 
→ limiting for lensing surveys 

But baryons imprinted on CMB 
→ major progress with BOSS/
eBOSS/DESI with SO/S4

http://arxiv.org/abs/1510.06442
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FIG. 8. Left panel: level of shear calibration for LSST with CMB S4 lensing, when varying the source photo-z priors. The
black line corresponds to the fiducial priors, and the colored lines are labelled with “x%” such that the prior on �z,source,i is
Gauss(0, x%) and the prior on �z,source/(1 + z) is Gauss(0.05, 1.5 ⇥ x%). The dependence is more important at low redshift,
where a fixed absolute change in z corresponds to a larger relative change in comoving distance.
Right panel: varying lens photo-z priors. Similarly to the left panel, the black line corresponds to the fiducial priors, and
the colored lines are labelled with “x%” such that the prior on �z,lens,i is Gauss(0, x%) and the prior on �z,lens/(1 + z) is
Gauss(0.01, 1.5⇥ x%). The shear calibration is almost completely insensitive to the lens photo-z priors.

cosmological parameters, galaxy biases, photo-z uncertainties for each source and lens bin and shear calibration for
each source bins. We make conservative choices of galaxy samples and scales. We therefore expect our forecast to be
realistic and robust.

We show that CMB lensing from S4 can calibrate the shear multiplicative biases for LSST down to 0.3%�2% in 10
tomographic bins, surpassing the LSST requirements of ⇠ 0.5% in most of the redshift range. This method performs
best in the highest redshift bins, where shear calibration is otherwise most challenging. We show a shear calibration
of 0.4%�2.4% for Euclid’s 10 tomographic source bins and 0.6%�3.2% for WFIRST’s 10 bins. For a reasonable level
of intrinsic alignments and Gaussian photo-z uncertainties, the shear calibration from CMB S4 lensing is only biased
at a fraction of the statistical uncertainty. This shear calibration is sensitive to the noise level in CMB S4 maps, but
insensitive to the beam and maximum multipole at which component separation is performed, within sensible values.
Thus stage 3 CMB surveys such as AdvACT and SPT-3G, as well as the Simons Observatory, will already provide
a meaningful shear calibration. It is mildly dependent on the photo-z priors for Gaussian photo-z errors, and on the
maximum multipole included in the analysis, beyond `

max

⇠ 1, 000. We did not consider explicitly photo-z outliers
[66] or potential biases in the CMB lensing reconstruction [86, 87].

In conclusion, we find that shear calibration from CMB lensing will be possible at a level competitive with or even
exceeding the LSST requirements. This method is a powerful alternative to simulation-based calibration techniques,
because it relies on the data directly. In the systematics-limited era of stage 4 weak lensing surveys, this method
will provide redundancy and serve as a cross check, in order to reliably measure the properties of dark energy, the
neutrino masses and possible modifications to general relativity.
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Controlling systematics
Schaan Krause Eifler Doré Miyatake Rhodes Spergel, PRD, arxiv:1607.01761

Schaan+16

Current optical lensing is 
systematics-limited at 5% (DES, 
KiDS) 
→ degenerate with dark energy 
and neutrinos 

Future experiments require 0.5% 
(LSST, Euclid, WFIRST) 
→ achievable with SO/CMB S4 
lensing!

4.5. Mitigation of Systematic e↵ects 43

process that galaxy images go through is encapsulated in Figure 4.3. A galaxy is sheared by the
gravitational potential along the line of sight. This sheared galaxy is then further convolved with
a PSF, pixelated and is observed in the presence of noise. The shape measurement problem is to
disentangle the steps subsequent to the shearing process and to measure this shear to a high
accuracy. Members of the EIC WLWG are at the forefront in finding solutions to this problem,
with EIC members having developed a number of shape measurement approaches. These includes
lensfit (Miller et al. 2007; Kitching et al. 2008a), shapelets (Refregier & Bacon 2003; Massey
& Refregier 2005), im2shape (Bridle & et al. 2004). Shape measurement methods have always
met the demands of contemporary weak lensing data. However, this is an area in which further
improvements must be made.

To improve on the current methods, a roadmap of simulations and testing has been developed.
In Bridle et al. (2008, 2009), the first GRavitational lEnsing Accuracy Testing (GREAT) challenge
was launched. These are a set of simulations in which the shear is introduced in a controlled
manner. Shape measurement algorithms can then be used on these simulations and their
performance measured against the input. GREAT08 ran for 6 months during 2008 as a blind
challenge. During this short time, a factor of 2 improvement was gained over existing methods.
In some simulated conditions, the most successful methods met and surpassed the requirements
set by Euclid, but further work is ongoing to broaden this success. The next suite of simulations
in this challenge is GREAT10 (Kitching & et al. 2010), which will increase the complexity over
that of the GREAT08 challenge by introducing variable shear and PSF.

Intrinsic galaxy
(shape unknown)

Gravitational lensing 
causes a shear (g)

Atmosphere and telescope
cause a convolution

Detectors measure
a pixelated image

Image also 
contains noise

The Forward Process.
Galaxies: Intrinsic galaxy shapes to measured image:

Stars: Point sources to star images:

Intrinsic star
(point source)

Atmosphere and telescope
cause a convolution

Detectors measure
a pixelated image

Image also 
contains noise

Figure 4.3: Illustration of the processes that a↵ect galaxy and star images. The intrinsic shape
of a galaxy is gravitationally lensed by intervening matter causing the cosmic shear e↵ect that
we plan to measure. After this, the galaxy image becomes blurred due to the PSF (in space
this would come only from the instrument), pixelated by the detectors. The final image will
also have noise. Star images su↵er from many of these e↵ects but crucially their images are
not gravitationally lensed. We are therefore able to use star images to correct galaxy images to
recover the shear signal. This is discussed in more detail in Chapter 8 (Figure taken from Bridle
et al. 2008)

Heymans, Euclid Science Book 2010
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accuracy. Members of the EIC WLWG are at the forefront in finding solutions to this problem,
with EIC members having developed a number of shape measurement approaches. These includes
lensfit (Miller et al. 2007; Kitching et al. 2008a), shapelets (Refregier & Bacon 2003; Massey
& Refregier 2005), im2shape (Bridle & et al. 2004). Shape measurement methods have always
met the demands of contemporary weak lensing data. However, this is an area in which further
improvements must be made.

To improve on the current methods, a roadmap of simulations and testing has been developed.
In Bridle et al. (2008, 2009), the first GRavitational lEnsing Accuracy Testing (GREAT) challenge
was launched. These are a set of simulations in which the shear is introduced in a controlled
manner. Shape measurement algorithms can then be used on these simulations and their
performance measured against the input. GREAT08 ran for 6 months during 2008 as a blind
challenge. During this short time, a factor of 2 improvement was gained over existing methods.
In some simulated conditions, the most successful methods met and surpassed the requirements
set by Euclid, but further work is ongoing to broaden this success. The next suite of simulations
in this challenge is GREAT10 (Kitching & et al. 2010), which will increase the complexity over
that of the GREAT08 challenge by introducing variable shear and PSF.

Intrinsic galaxy
(shape unknown)

Gravitational lensing 
causes a shear (g)

Atmosphere and telescope
cause a convolution

Detectors measure
a pixelated image

Image also 
contains noise

The Forward Process.
Galaxies: Intrinsic galaxy shapes to measured image:

Stars: Point sources to star images:

Intrinsic star
(point source)

Atmosphere and telescope
cause a convolution

Detectors measure
a pixelated image

Image also 
contains noise

Figure 4.3: Illustration of the processes that a↵ect galaxy and star images. The intrinsic shape
of a galaxy is gravitationally lensed by intervening matter causing the cosmic shear e↵ect that
we plan to measure. After this, the galaxy image becomes blurred due to the PSF (in space
this would come only from the instrument), pixelated by the detectors. The final image will
also have noise. Star images su↵er from many of these e↵ects but crucially their images are
not gravitationally lensed. We are therefore able to use star images to correct galaxy images to
recover the shear signal. This is discussed in more detail in Chapter 8 (Figure taken from Bridle
et al. 2008)
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Figure 12. Left panel: Relative difference between the non-linear power spectrum from the simulation
and from LPT (Zel’dovich approximation, 1 and 2-loop) and EFT (1-loop). The 1% error domain is
the shaded grey band. The maximum wave vector with accuracy of 1% is improved by a factor of
three from 1-loop LPT to 1-loop EFT, from 0.05 h/Mpc to 0.15 h/Mpc. The 2-loop LPT worsens
the agreement to simulation, compared to 1-loop LPT. The shaded magenta region indicates the
scatter we would get due to cosmic variance without the LPT calculation on the simulation grid:
this measurement has negligible cosmic variance. Right panel: Power spectrum of the error on the
displacement field. Adding the second and third order to the first order displacement improves the
agreement at the level of the displacement field on large scales (k . 0.1hMpc�1). Including the EFT
counterterm at 1-loop further improves the agreement, by correcting the UV mistake in �3. However,
going up to fifth order in LPT worsens the agreement, as expected for an asymptotic series, because
of the UV mistake that is not corrected by EFT counterterms.

3.4 Relative importance of the various EFT terms

As Fig. 12 shows, the EFT provides a good fit not only to the non-linear power spectrum,
but also to the displacement field itself. However, in the case of the EFT power spectrum,
the contribution from �

(2) (i.e. the term P22) is negligible compared to the contribution from
�

(3) (i.e. the term P13). One might therefore wonder about the relative importance of the
non-linear terms �

(2), �

(3), ↵k

2
�

(1) present in the EFT model: do they contribute equally?
Is the second order displacement �

(2) helping at all in the agreement with simulation?
The answer to these questions can be visualized as follows. The displacement fields
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, �

(1), �

(2), �
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i as a scalar product and
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|2i as the corresponding squared norm on this vector space. Intuitively, with this scalar
product, two displacement fields are aligned if they are perfectly correlated, and orthogonal if
they are completely uncorrelated. This allows a graphical representation of the displacement
fields on the basis
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of the LPT terms. This basis is not orthogonal (e.g.
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FIG. 3: Diagrams up to order n = 4 in the series expansion of Ψ (k , η).

Ψ (2)
a (k , η) = d3k1 d3k2

η

0
ds gab (η − s) γ ( s )

bcd(k , k 1 , k 2 ) gce (s)φe (k 1 ) gdf (s)φf (k 2 ) , (26)

Ψ (3)
a (k , η) = 2 d3k1 d3k2

η

0
ds gab (η − s) γ ( s )

bcd(k , k 1 , k 2 ) gce (s)φe(k 1 ) Ψ
(2)
d (k 2 , s ) . (27)

The diagrams we construct here are very similar to any field th eory with quadratic nonlinearities, perhaps
the closest example to ours is that of turbulence where simil ar methods are well known [16, 17, 18]. There
is also a recent paper [19] that applies path-integral metho ds to gravitational clustering in cosmology.

III. STATISTICS

A. Initial Conditions

As it stands, the integral Equation (20) can be thought as an e quation for Ψa (k , η) in the presence of an
“external source” or forcing given by the initial condition s φa (k ) (i.e. δ0 (k )), with prescribed statistics. Here
we assume that the initial conditions are Gaussian; the stat istical properties of φa (k ) are then completely
characterized by its two-point correlator

φa (k ) φb(k ) = δD (k + k ) uaub P0 (k) , (28)

where P0 (k) denotes the initial power spectrum of density fluctuations . According to Wick’s theorem, all
higher order correlations of an odd number of fields vanish, w hereas for an even number there are (2n − 1)!!
contributions corresponding to all di fferent pairings of the 2n fields,

φa 1 (k 1 ) · · · φa 2n (k 2n ) =
all pair associations p pairs (i , j)

φa i (k i ) φa j (k j ) . (29)

When statistics are calculated, pairs ofi nitial fields φa are replaced by the initial power spectrum as one
of the basic building blocks. It will be graphically denoted by the symbol shown in Fig. 4, that arises from
gluing a pair ofi nitial fields from Fig. 2.
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Non-linearities: beat coupling

• Growth: Hamilton+06, Baldauf Seljak+11, de Putter+12 
• Dilation: Sherwin+12, Li+14, Chiang+14
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: Cumulative signal-to-noise ratios (S/N ) for the power spectrum (P ), the bispectrum (B ) and the joint measurement (P + B ) for a
and source redshift zs = 1 . It is shown as a function of the maximum multipole lmax , where the power spectrum and/or bispectrum

information are included over lmin l lmax (see Eqs. 27, 28 and 31). Note that we set lmin = 72 and did not include the shape noise contamination here
– it is shown in the next figure. The circle, triangle and square symbols are the simulation results, computed from the 1000 realizations, for P , B and P + B
measurements, respectively. The short-dashed, long-dashed and solid curves are the halo model predictions. Adding the bispectrum to the power spectrum

amplitude, e.g. by about 50% at lmax 103 . For comparison, the thin dotted curve shows the S/N for the power spectrum for
the Gaussian field, which the primordial density field should have contained. Right panel: The thinner curves are added to the left panel to show the model
predictions without the HSV contribution. For l > 1000, the HSV contribution lowers the S/N significantly.

the non-Gaussian errors, the total S/N is not simply a sum of the S/N ’s of the power spectra and the bispectra due to the cross-covariance,
because the two spectra are not independent. To study this, we first define the data vector for the joint measurement as

, P n b , B 1 , B 2 , · · · , B i triang , max . (29)

The covariance matrix for the data vector D is given as

C P B

C B , (30)

is the cross-covariance between the power spectrum and the bispectrum. Then, the total S/N for the combined measurement
is similarly defined as

max

D i C P + B − 1

ij
D j . (31)
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the non-Gaussian errors, the total S/N is not simply a sum of the S/N ’s of the power spectra and the bispectra due to the cross-covariance,
because the two spectra are not independent. To study this, we first define the data vector for the joint measurement as
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The covariance matrix for the data vector D is given as
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Non-linearities: halo model

• “Halo sample variance” 
Hu Kravtsov 02, Hu Cohn+06, Sato+09 

• Correlation between P, B and 
number of halos 
Kayo+12, Takada Spergel 13, Schaan+14

Fig. 1. The complex distribution of dark matter (a) found in numerical simulations
can be easily replaced with a distribution of dark matter halos (b) with the mass
function following that found in simulations and with a profile for dark matter
within halos.

1 Introduction

This review presents astrophysical applications of an approach which has its
origins in papers by Jerzy Neyman & Elizabeth Scott and their collaborators
nearly fifty years ago. Neyman & Scott [199] were interested in describing
the spatial distribution of galaxies. They argued that it was useful to think
of the galaxy distribution as being made up of distinct clusters with a range
of sizes. Since galaxies are discrete objects, they described how to study sta-
tistical properties of a distribution of discrete points; the description required
knowledge of the distribution of cluster sizes, the distribution of points around
the cluster center, and a description of the clustering of the clusters [199]. At
that time, none of these ingredients were known, and so in subsequent work
[200,201], they focussed on inferring these parameters from data which was
just becoming useful for statistical studies.

Since that time, it has become clear that much of the mass in the Universe
is dark, and that this mass was initially rather smoothly distributed. There-
fore, the luminous galaxies we see today may be biased tracers of the dark
matter distribution. That is to say, the relation between the number of galax-
ies in a randomly placed cell and the amount of dark matter the same cell
contains, may be rather complicated. In addition, there is evidence that the
initial fluctuation field was very close to a Gaussian random field. Linear
and higher order perturbation theory descriptions of gravitational clustering
from Gaussian initial fluctuations have been developed (see Bernardeau et
al. [15] for a comprehensive review); these describe the evolution and mildly
non-linear clustering of the dark matter, but they break down when the clus-
tering is highly non-linear (typically, this happens on scales smaller than a few
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FIG. 6. The likelihood distribution of the angular number counts of halos with M � 1014M�/h, in the light-cone up to zs = 1
and with area 25 sq. degrees. The histogram shows the distribution measured from the 1000 ray-tracing simulations. The
red-color, solid curve shows the halo model prediction computed assuming the Gaussian likelihood function (Eq. 38), where we
used the halo model to compute the mean and the variance. For comparison, the green-color, solid curve shows the Gaussian
distribution that has the same mean value and variance as those of the simulations. The mean, variance, skewness and excess
kurtosis values measured from the simulations are also given.

FIG. 7. Similarly to the previous figure, but for the lensing power spectrum P(l). The di↵erent panels show the distributions
for di↵erent multipole bin as indicated. Again the halo model prediction (red, solid curve) well reproduces the width of the
simulation distribution, if the HSV contribution is included. The skewness and kurtosis measured from simulations are small
compared to the width of the distribution.
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FIG. 4. Cross-covariance between the angular number counts of halos and the lensing power spectrum P(l) as a function of
multipoles. For the number counts, we included all the halos that are in the light cone up to zs = 1 over area 25 sq. degrees
(area of the ray-tracing simulation) and have masses greater than M = 1014M�/h. The error bars for the simulation results are
the variance estimated from the 1000 realizations. For the halo model prediction, we used Eq. (35) to compute the contributions
arising from the product of the number counts and the power spectrum (NP) and the HSV e↵ect. The di↵erence between the
left and right panels is whether the halo model prediction includes the 2-halo term of the HSV e↵ect (right) or not (left). The
halo model prediction, with the 2-halo HSV e↵ect, fairly well reproduces the simulation result.

where k = l/� in the arguments on the r.h.s.
The cross-covariance for the lensing bispectrum is

Cov[N̂M>Mth , B̂(~l)] =

Z �S
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where we have again used the collapsed notation such as ~l = (l1, l2, l3) and ~k = (l1/�, l2/�, l3/�).
To be more general, the cross-covariance for the lensing n-point correlation function is given as
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In Figs. 4 and 5, we compare the halo model predictions for the cross-covariance of the angular number counts of
halos with the lensing power spectrum or bispectrum. For the halo number counts, we included all the halos that
are in the light cone up to zs = 1 and over area of 25 square degrees (area of the ray-tracing simulation). Both
figures show that the halo model predictions are in fairly nice agreement with the simulation results, if including the
HSV contribution. It is also shown that including the di↵erent halo terms of the HSV e↵ect better agrees with the
simulation results over a range of the transition regime of multipoles between the 1-halo term and the di↵erent halo
terms.

V. JOINT LIKELIHOOD FOR POWER SPECTRUM, BISPECTRUM AND CLUSTER COUNTS, AND
FISHER FORECAST

We have so far derived the co- or cross-variances between the halo number counts, the power spectrum and the
bispectrum. In this section, we discuss their joint likelihood function. Exactly speaking, a derivation of the likelihood
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FIG. 5. Similarly to the previous plot, the cross-covariance between the angular halo number counts and the bispectrum of
equilateral triangle configurations, B,eq(l, l, l). The halo model computation is based on Eq. (36). The di↵erence between the
left and right panels is whether we included the 2- and 3-halo terms for the HSV contribution in the halo model prediction
(right panel) or not (left).

function requires a knowledge on all the higher-order cumulants of the observables beyond the second-order moments
such as the skewness and kurtosis. Here, we instead assume that the joint likelihood function obeys a multivariate
Gaussian function that is given by the mean values and the second-order variances (co- or cross-covariances) of the
observables, which we have already derived up to the previous section. The multivariate Gaussian likelihood is
somewhat expected for the lensing fields at high multipoles due to the central limit theorem, because the lensing field
is from a projection of independent large-scale structure at di↵erent redshifts along the line-of-sight and also because
the power spectrum and bispectrum of high multipoles are from the averages over a large number of Fourier modes.

Thus we assume that the joint likelihood function for observables D obeys the following multivariate Gaussian:

L (D) / exp



�1

2

�

D � D̄
�t
⌃�1

�

D � D̄
�

�

, (38)

where D denotes the observable vector, e.g. defined a D ⌘
⇣

{P̂ (l)}, {B̂(l)}, N̂M>Mth

⌘

, D̄ denotes its mean vector, ⌃

its co- or cross-variance matrix, and ⌃�1 is the inverse matrix. The vector and matrix notations are intended to mean
the summation over the cluster mass bin (a single bin though here), the multipole bins or the triangle configurations.

In Figs. 6, 7 and 8, we show the distributions of the angular number counts of halos, the lensing power spectrum,
and the bispectrum of equilateral triangles, which we measured from the 1000 ray-tracing simulations. Again note that
the distributions are for the area of 25 sq. degrees. These observables show a fairly symmetric distribution, although
the bispectrum shows a larger skewness than the other two quantities. The red-color solid curve in each figure shows
the halo model prediction (Eq. 38). The halo model appears to well reproduce the width of the distribution seen in
the simulations. The agreement is realized only if we include the HSV contributions as shown Figs. 1 and 2. These
figures also show that the skewness of the distribution is well within the width of the distribution.

Figs. 9, 10 and 11 show the joint distributions for a combination of the angular number counts of halos, the lensing
power spectrum, or the lensing bispectrum of triangle configurations. The halo model fairly well reproduces the joint
distributions over a range of multipoles (the width and the direction of the cross-correlation). However, we note that
the agreement for the bispectrum is not relatively as good as for the power spectrum, reflecting the limitation of the
multivariate Gaussian assumption for the bispectrum distribution.

Having found that the halo model fairly well describes the joint likelihood functions between the cluster number
counts and the lensing correlation functions, we now discuss how a future survey can improve cosmological constraints
based on the joint measurements of the di↵erent observables obtained from the same survey data. As one demonstra-
tion, we consider only two cosmological parameters, the matter density parameter ⌦m and the amplitude parameter
of the primordial curvature perturbation As, both of which are sensitive to the amplitudes of the number counts and
the lensing correlation functions and therefore are most a↵ected by the HSV e↵ect. However, note that we fix all other
parameters to their fiducial values. Assuming the multivariate Gaussian likelihood, we use the Fisher information
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FIG. 1. Comparison of our analytical prediction for the lensing power spectrum covariance (Eqs. 34 and 20) with the ray-
tracing simulation results obtained from 1000 realizations. Here we considered a single source redshift zs = 1. For the analytical
predictions, the Gaussian term (PP), the trispectrum term (T) and the halo sample variance (HSV) are included. The error
bars for the simulation results are obtained from the variance of the 1000 realizations, which correspond to 1� scatters of power
spectrum estimation for 25 square degrees, the area of each ray-tracing simulation. Left panel: We included only the 1-halo
term for the HSV calculation. Right: We further included the 2-halo term contribution for the HSV e↵ect. The analytical
predictions are in fairly good agreement with the simulation results, over a wide range of multipoles, if the HSV e↵ect is
included in the analytical prediction. Comparing the left and right panels shows that including the 2-halo term of the HSV
e↵ect improves the agreement at the transition regime between the 1- and 2-halo terms, in the range of l 'a few hundreds to
103.

Here d�2(z;⌦S) is given by Eq. (31). The above expression matches the result in Ref. [29].

2. Covariance for lensing n-point correlation functions

Similarly to the discussion in Section III B 3, the HSV contribution to the covariance between the n- and n0-point
correlation functions of the convergence field, P̂

n and P̂
n0 , is given under our formulation as

Cov[P̂
n , P̂


n0 ]HSV =

Z �S

0
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@�b
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@�b
d�2(�;⌦S). (34)

Note that we can include the e↵ect of the coherent super-survey mode �b on the 1-halo term and the di↵erent halo
terms by computing the response functions such as @Pn/@�b. This di↵ers from what was done in the previous study,
where only the 1-halo contribution was computed.

Fig. 1 shows the diagonal elements of the power spectrum covariance as a function of multipole. The halo model
predictions are in fairly good agreements with the simulation results. This agreement can be realized only if including
the HSV contribution. The right panel shows the results for the halo model when including the HSV contributions for
the 2-halo term, which can be compared with the previous study such as Ref. [27]. The figure shows that including
the HSV 2-halo term improves the agreement over a range of the transition regime between the 2- and 1-halo terms.
Note that these results are for survey area of 25 sq. degrees, the area of the ray-tracing simulations we use (see
Section IVB), but the HSV e↵ects are significant for any survey area of upcoming surveys (see Refs. [21, 28]).

In Figs. 2 and 3, we show the results for the bispectrum covariance and the cross-covariance between power spectrum
and bispectrum. We followed the method in Ref. [21], and for both the figures we considered the bispectra of equilateral
triangle configurations against the side length. The halo model is again in good agreement with the simulations, to a
level of 10-20% accuracy in their amplitudes.
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FIG. 2. Comparison of the halo model prediction with the simulation results for the lensing bispectrum covariance for equilateral
triangle configurations, as a function of the side length. For the analytical model, we included the standard Gaussian and non-
Gaussian contributions arising from a combination of the correlation functions up to the 6-point correlation function (PPP,
BB, PT, P6, from Eqs. 34 and A15) and also included the HSV contribution (Eq. 24). For the HSV contribution, we included
all 1-, 2- and 3-halo terms, but only the 1=halo term gives an important contribution.

FIG. 3. Cross-covariance between the lensing power spectrum, P(l), and the bispectrum of equilateral triangle configura-
tion, B

eq

(l, l, l), against multipoles. Similarly to the previous plot, for the halo model prediction, we included the standard
contributions (PB, P5, from Eq. A16) and the HSV contribution (Eq. 34).

3. Cross-covariances between angular number counts of halos and the lensing n-point correlation functions

Applying the formulation for 3D fields in Section III C to 2D fields, we can estimate the cross-covariance between
the angular number counts of clusters and the lensing power spectrum:
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Gain from a Joint Analysis

ng = 20 arcmin-2 

σε = 0.22 

area = 15000 deg2 

<zs> = 1  

18

FIG. 12. Forecast error on the amplitude of scalar perturbations AS as a function of the maximum observed multipole l
max

,
when marginalizing over ⌦m, and keeping all other parameters fixed. The survey considered has angular area 15000 sq. deg.,
with a source distribution following [46] with hzsi = 3z

0

= 1. The galaxy shape noise on the power spectrum is included, with
�✏ = 0.22 and n

gal

= 20arcmin�2. Solid red line: measuring the power spectrum only. Solid green line: combining power
spectrum and bispectrum measurements. Dashed lines: including the clusters counts data.

Appendix A: Matter N-point functions: expectation values and covariances

1. Expectation values: halo decomposition

In this subsection we derive the expectation value of our power spectrum estimator without using the general results
from Section IIC, in order to see in more details why the expectation value is not a↵ected by the finite size e↵ect.
The same reasoning applies to any n-point function as we shall explain.

Our estimator for the power spectrum is given by Eq (17), where the matter overdensity is described in the halo
model by Eq (2). The expectation value for the power spectrum estimator is obtained directly from:

D

�̂(~q1)�̂(~q2)
E

=

*

X

i,j

✓

mimj

⇢̄2

◆

ui(~q1)uj(~q2) n̂i(~q1, �b)n̂j(~q2, �b)

+

=
X

i,j

✓

mimj

⇢̄2

◆

ui(~q1)uj(~q2) hn̂i(~q1, �b)n̂j(~q2, �b)i .
(A1)

Thus we only need to compute the quantity hn̂i(~q1, �b)n̂j(~q2, �b)i. We decompose the averaging procedure into
marginalizing over the Poisson sampling, then the underlying density ⇢lin, and eventually the local average over-
density �b. The First average is obtained from Eq (4), and gives the usual Poisson shot noise:

hn̂i(~x1)n̂j(~x2)iPois. = ni(~x1)nj(~x2) + �Ki,j�D(~x1 � ~x2)ni(~x), (A2)

where again, we defined ni(~x) ⌘ hn̂i(~x)iPois.. After Fourier transform, this becomes:

hn̂i(~q1)n̂j(~q2)iPoisson = ni(~q1)nj(~q2) + �Ki,jni(~q1 + ~q2). (A3)

Averaging over the underlying density field at fixed �b gives:

hn̂i(~q1)n̂j(~q2)iPois.,⇢lin|�b = hni(~q1)nj(~q2)i⇢lin|�b + �Ki,j n̄i(�b) (2⇡)
3
�D(~q1 + ~q2)

= n̄i(�b)n̄j(�b)
⌦

�hi (~q1)�
h
j (~q2)

↵

⇢lin|�b
+ �Ki,j n̄i(�b) (2⇡)

3
�D(~q1 + ~q2)
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n̄i(�b)n̄j(�b)bibjPlin(q1) + �Ki,j n̄i(�b)
⇤

(2⇡)3 �D(~q1 + ~q2).

(A4)

Here, we introduced the usual halo number overdensity �hi for halos of mass mi, and used the linear bias to write
⌦

�hi �
h
j

↵

= (2⇡)3 �DbibjPlin. Switching to discrete Fourier transform, this becomes:

hn̂i(~q1)n̂j(~q2)iPois.,⇢lin|�b =
⇥

n̄i(�b)n̄j(�b)bibjPlin(q1) + �Ki,j n̄i(�b)
⇤

VS�
K
~q1+~q2 . (A5)

→ Precision on Ωm and As improved by ~40% 
→ Factor of 2 in survey volume

P

P,N
P,B

P,B,N
Schaan, Takada, Spergel 2014



• Finite survey volume degrades information  
Schaan, Takada & Spergel 2014 

• Missing information partially recovered by joint 
analyses 

• (Cheaper covariance matrix estimation possible) 

• ...noise or signal?  
“Super sample signal”, Li, Hu, Takada 2014

Summary
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• Ionization and thermal history  
line width, transmission pdf, Gunn-
Peterson trough 

• Small-scale power: WDM,  FDM, 
neutrino masses 
McDonald+06, Viel+13, Hui+16, Palanque-
Delabrouille+15 

• BAO from auto & cross with QSOs 
Delubac+14 , Font-Ribera+14 

• 3d tomography 
Lee 14, Lee+14,15, Lee White 16
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Figure 1. The BAO “Hubble diagram” from a world collection of detections. Blue, red, and green points show BAO mea-
surements of DV /rd, DM/rd, and zDH/rd, respectively, from the sources indicated in the legend. These can be compared
to the correspondingly colored lines, which represents predictions of the fiducial Planck ⇤CDM model (with ⌦m = 0.3183,
h = 0.6704, see Section II C). The scaling by

p
z is arbitrary, chosen to compress the dynamic range su�ciently to make error

bars visible on the plot. Filled points represent BOSS data, which yield the most precise BAO measurements at z < 0.7 and
the only measurements at z > 2. For visual clarity, the Ly↵ cross-correlation points have been shifted slightly in redshift;
auto-correlation points are plotted at the correct e↵ective redshift.

On their own, the BAO data in Figure 2 clearly favor a
universe that transitions from deceleration at z > 1 to
acceleration at low redshifts, and this evidence becomes
overwhelming if one imagines the corresponding CMB
measurements o↵ the far left of the plot. We quantify
these points in the following section.

It is tempting to consider a flat cosmology with a con-
stant H/(1 + z) as an alternative model of these data
[66]. Note that although this form of H(z) occurs in
coasting (empty) cosmologies in general relativity, those
models have open curvature and hence a sharply di↵er-
ent DM (z). But even for the flat model, the data are
not consistent with a constant H(z)/(1 + z), first be-
cause the increase in c ln(1 + z)/DM (z) from z = 0.57
to z = 0.0 is statistically significant, and second because
of the factor of two change of this quantity relative to
that inferred from the CMB angular acoustic scale. The
change from z = 0.57 to z = 0 is more significant than
the plot indicates because the data points are correlated;

this occurs because the H
0

value results from normaliz-
ing the SNe distances with the BAO measurements. We
measure the ratio of the values, H

0

DM (0.57)/c ln(1.57),
to be 1.080±0.014 from the combination of BAO and SNe
datasets, a 5.5� rejection of a constant hypothesis and an
indication of the strength of the SNe data in detecting
the low-redshift accelerating expansion.

III. BAO AS AN UNCALIBRATED RULER

A. Convincing Detection of dark energy from BAO
data alone

For quantitative contraints, we start by considering
BAO data alone with the simple assumption that the
BAO scale is a standard comoving ruler, whose length is
independent of redshift and orientation but is not nec-
essarily the value computed using CMB parameter con-

Cosmology  
from Lyman-α forest

Tegmark+03

Aubourg+15



• Assume photoionization equilibrium in uniform UV 
background: 

• But Jeans’ smoothing, thermal broadening, 
proximity, extra sources of entropy? 

→ test the neutral gas—matter connection?

Modeling the Lyman-a forestFigure 2: Ly↵ forest spectral region for three quasars chosen to span a large range in

redshift. The HST/STIS spectrum of PG1634+706 was provided by X. Prochaska, the

VLT/UVES spectrum of HE2347-4342 by C. Fechner (Fechner & Reimers 2007), and the

VLT/X-Shooter spectrum by G. Becker (D’Odorico et al. 2013).

the ultraviolet flux blueward of 912Å, especially for z & 2 sightlines). At each location z,

the Ly↵ optical depth corresponding to gas at a fixed density with a smooth line-of-sight

gradient, dv/dx, in velocity (including the Hubble contribution) is given by

⌧Ly↵(z) = 1.3�b

⇣ xHI

10�5

⌘✓
1 + z

4

◆3/2 ✓
dv/dx

H(z)/(1 + z)

◆�1

, (1)

where the optical depth is related to the absorption probability via P = exp(�⌧Ly↵).
1

Here, �b is the baryonic density in units of the cosmic mean, and xHI is the fraction of

hydrogen that is neutral. Similarly, there are Ly�, Ly�, Ly�, etc. H i absorption forests,

corresponding to absorption into a progressively higher-n Rydberg state. With increasing

n, the associated forest spans a progressively shorter path length (and falls on top of lower

redshift, smaller-n forests) and is less absorbed (owing to smaller oscillator strengths).

Equation (1) shows that the Ly↵ forest is sensitive to xHI ⇠ 10�5 at z = 3, which

translates to astonishingly low H i number densities of nHI ⇠ 10�10 cm�3. It turns out

that over much of cosmic time such number densities occur in the low-density IGM (as a

apparent from the spectra in Fig. 2). In the post-reionization IGM, xHI is physically set by

the balance between photoionization and recombination and is given by

xHI =
↵A ne

�
, (2)

1The approximation of setting dv/dx = H(z)/(1+ z) in equation (1), known as the “fluctuating
Gunn-Peterson approximation”, is relatively accurate and allows one to calculate the absorption
from just density skewers, ignoring peculiar velocities (Weinberg et al. 1997).

www.annualreviews.org

•
intergalactic medium 7

McQuinn 16



Testing connection LyA-matter

• Zaldarriaga Seljak Hui 01:  
constrain non-gravitational sources of fluctuations in 
Lyman-α, e.g. continuum fitting errors 

• Meiksin White 03: 
constraining fluctuations in UV background from the 
Lyman-α transmission pdf 

• Vallinotto+09:  
CMB lensing and LyA forest 



BOSS LyA forest sample

400Mpc

1-60Mpc

20Mpc
z=2.1

z=3.6

BOSS: 150k forests, used 90k  
(eBOSS: 700k, 50k at z>2.15)  
(DESI: 500k QSOs at z>2.15)

Lee & Stark



Origin of our signal 

Lyman-α forest 

power spectrum

CM
B 

le
ns

in
g

Lee & Stark



Origin of our signal 
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power spectrum
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bias velocities Non-linearities, 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5σ detection
5

with theoretical curves with best fit biases. The best fit
of the linear bias b1(z) is shown in Fig. 3 with error bars
including the marginalization over ↵z. We fit this result
with a power law in (1 + z) of the form b1(z) = a(1+ z)b

and find a = �0.00507 and b = 2.79. It is represented
by the solid blue curve in Fig. 3 and is in fairly good
agreement with the bias measured in hydrodynamic sim-
ulations in [18] (which we only used in the weights).
The next step of our analysis is to compute the

weighted unbiased covariance of the lensing convergence
and the one-dimensional power spectrum. Quasars have
a significant contribution to the lensing of the CMB
because the lensing e�ciency W peaks at z ⇠ 2.
Therefore, we expect the mean convergence in the di-
rections of quasars to be positive, and indeed find
104 ⇥ hWF

i i = 1.35 ± 0.52. This value is consistent with
the expected amplitude  = (⇤ ⇤ ⌃)/⇢̄ ⇠ 1.5 ⇥ 10�4

where ⌃ is the projected density of the haloes hosting
the quasars (computed for a NFW profile [36] with a
halo mass Mh ⇠ 2⇥1012M�/h and redshift 2.5 [37]) con-
volved with the Wiener filter and ⇢̄ is the mean matter
density. With the aim of measuring the correlation be-
tween our two probes, we subtract the mean value hWF

i i
in the computation of the covariance. So as to decrease
the e↵ects of noise in this measurement, we also subtract
the mean value of the power spectrum in each k-bin. The
estimator for the correlation of CMB lensing and fluctua-
tions in the Lyman-↵ forest, i.e. the CMB lensing � Ly↵
integrated bispectrum, is defined as

B̂,Ly↵(kk) =̂ Covw(kk)

⇥
WF, P 1d

Ly↵(kk)
⇤
, (20)

where

Covw [x, y] = N ⇥
X

i

wi (xi � hxi) (yi � hyi) (21)

with the normalization N =
P

i wi/
⇣
(
P

i wi)
2 � P

i w
2
i

⌘
.

The mean values hWFi and hP 1d(kk)i are computed
using the same weights as well. The measured values in
each k-bin are shown in purple in Fig. 4.

To compute the covariance matrix for the various k-
bins, we proceed by computing the signal repeatedly with
shu✏ed indices in WF

i . More precisely, for a given ran-
dom permutation � of the quasar indices, we compute

Cov
h
WF
�(i), P

1d
Ly↵,i(kk)

i
and repeatN = 10, 000 times. We

then estimate the mean value (thin red boxes on Fig. 4)
and the empirical covariance. The corresponding matrix
of correlation coe�cients is shown in Fig. 5.

Finally, we aim at comparing our theoretical model and
fitting a value of the e↵ective non-linear bias be↵2 defined
in Eq. (9). We measure a single number, i.e. a scale
and redshift averaged non-linear bias, characterizing the
non-linear response in our sample. For each line of sight,
we evaluate the expected signal using Eq. (4) given the
redshift range [zmin, zmax] of the forest, and the linear
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FIG. 4. Integrated bispectrum of CMB lensing and fluctua-
tions in the Lyman-↵ forest. The Wiener-filtered CMB lens-
ing is measured in the direction of quasars for which we mea-
sure the Lyman-↵ forest one-dimensional power spectrum in
the range kk ⇠ 0.1 � 1.5 h/Mpc. Data points (in purple)
show a signal measured at 5 �. The theoretical curve (solid
orange) is the sum of two terms: the response of the lin-
ear matter power spectrum (dashed), and the response of the
non-linear terms in the Lyman-↵ power spectrum (non-linear
bias b2, Kaiser term and baryonic non-linear term D) (dot-
ted). While the first involves no free parameter, the latter
has an amplitude proportional to the e↵ective non-linear bias
be↵2 = 1.16 ± 0.53, see Eq. (9). The orange area represents
the 1 � uncertainty on this non-linearity amplitude. We test
that our estimator is coherent with zero in the case of no cor-
relation by a shu✏ing method (thin red boxes, expanded 10
times for visibility).

FIG. 5. Correlation matrix of the data-points between k-
bins computed by shu✏ing the indices of one of the variables.
It shows an important correlation ranging from 20% up to
almost 65% for the large k modes.

bias b1(z) from the power law best fit. We then weight
the theoretical expected value by the weights in Eq. (19).
The best fit value is be↵2 = 1.16 ± 0.53. The theoretical
curve (in orange in Fig. 4) is the sum of two contributions,
one from the linear power spectrum (dashed line) and the
other from the non-linear terms (dotted line).

Using the covariance matrix obtained by our shu✏ing

Doux Schaan+Lee+16
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Probing the Lyman-α — matter connection
5

with theoretical curves with best fit biases. The best fit
of the linear bias b1(z) is shown in Fig. 3 with error bars
including the marginalization over ↵z. We fit this result
with a power law in (1 + z) of the form b1(z) = a(1+ z)b

and find a = �0.00507 and b = 2.79. It is represented
by the solid blue curve in Fig. 3 and is in fairly good
agreement with the bias measured in hydrodynamic sim-
ulations in [18] (which we only used in the weights).
The next step of our analysis is to compute the

weighted unbiased covariance of the lensing convergence
and the one-dimensional power spectrum. Quasars have
a significant contribution to the lensing of the CMB
because the lensing e�ciency W peaks at z ⇠ 2.
Therefore, we expect the mean convergence in the di-
rections of quasars to be positive, and indeed find
104 ⇥ hWF

i i = 1.35 ± 0.52. This value is consistent with
the expected amplitude  = (⇤ ⇤ ⌃)/⇢̄ ⇠ 1.5 ⇥ 10�4

where ⌃ is the projected density of the haloes hosting
the quasars (computed for a NFW profile [36] with a
halo mass Mh ⇠ 2⇥1012M�/h and redshift 2.5 [37]) con-
volved with the Wiener filter and ⇢̄ is the mean matter
density. With the aim of measuring the correlation be-
tween our two probes, we subtract the mean value hWF

i i
in the computation of the covariance. So as to decrease
the e↵ects of noise in this measurement, we also subtract
the mean value of the power spectrum in each k-bin. The
estimator for the correlation of CMB lensing and fluctua-
tions in the Lyman-↵ forest, i.e. the CMB lensing � Ly↵
integrated bispectrum, is defined as
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The mean values hWFi and hP 1d(kk)i are computed
using the same weights as well. The measured values in
each k-bin are shown in purple in Fig. 4.

To compute the covariance matrix for the various k-
bins, we proceed by computing the signal repeatedly with
shu✏ed indices in WF

i . More precisely, for a given ran-
dom permutation � of the quasar indices, we compute
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�(i), P
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and repeatN = 10, 000 times. We

then estimate the mean value (thin red boxes on Fig. 4)
and the empirical covariance. The corresponding matrix
of correlation coe�cients is shown in Fig. 5.

Finally, we aim at comparing our theoretical model and
fitting a value of the e↵ective non-linear bias be↵2 defined
in Eq. (9). We measure a single number, i.e. a scale
and redshift averaged non-linear bias, characterizing the
non-linear response in our sample. For each line of sight,
we evaluate the expected signal using Eq. (4) given the
redshift range [zmin, zmax] of the forest, and the linear
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FIG. 4. Integrated bispectrum of CMB lensing and fluctua-
tions in the Lyman-↵ forest. The Wiener-filtered CMB lens-
ing is measured in the direction of quasars for which we mea-
sure the Lyman-↵ forest one-dimensional power spectrum in
the range kk ⇠ 0.1 � 1.5 h/Mpc. Data points (in purple)
show a signal measured at 5 �. The theoretical curve (solid
orange) is the sum of two terms: the response of the lin-
ear matter power spectrum (dashed), and the response of the
non-linear terms in the Lyman-↵ power spectrum (non-linear
bias b2, Kaiser term and baryonic non-linear term D) (dot-
ted). While the first involves no free parameter, the latter
has an amplitude proportional to the e↵ective non-linear bias
be↵2 = 1.16 ± 0.53, see Eq. (9). The orange area represents
the 1 � uncertainty on this non-linearity amplitude. We test
that our estimator is coherent with zero in the case of no cor-
relation by a shu✏ing method (thin red boxes, expanded 10
times for visibility).

FIG. 5. Correlation matrix of the data-points between k-
bins computed by shu✏ing the indices of one of the variables.
It shows an important correlation ranging from 20% up to
almost 65% for the large k modes.

bias b1(z) from the power law best fit. We then weight
the theoretical expected value by the weights in Eq. (19).
The best fit value is be↵2 = 1.16 ± 0.53. The theoretical
curve (in orange in Fig. 4) is the sum of two contributions,
one from the linear power spectrum (dashed line) and the
other from the non-linear terms (dotted line).
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C
o
v
[

C
M

B
,P

L
y
↵
(
k k
)
]

bias velocities Non-linearities, 
Jeans smoothing, thermal broadening

Arinyo-i-Prats+15

P 3d
Ly↵ = Pmatter(k) b

2 (1 + �µ2)2 D(k, µ)/f̄2

normalization



• Lyman-α forest powerful cosmological tool 
WDM, FDM, neutrino masses 

• Non-linearities test the connection Lyman-α — 
matter 

• First detection of a correlation between CMB and 
Lyman-α forest

Summary


