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Outline
• Observing LSS

• Measuring clustering statistics

• using photometric redshifts (photoz)

• Physical information

• Color, environment and galaxy evolution
• Rate of structure growth
• Baryon Acoustic Oscillations
• (Matter density, neutrino mass, primordial non-

Gaussianity)

• BOSS Photometric vs. Spectroscopic redshifts 
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• Overdensity, 

• 2-point angular correlation function, w:

                                               

• Alternatively:  

• Real-space denoted 

•  Fourier transform       ,  angular version                                                                    

Clustering Measurements
δ =

N

�N� − 1

ξ2(r)

w2(θ) = DD(θ)/RR(θ)− 1

P (k) C�
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The Dark Sector
• Agreement between 

simulation, 
observation

• Job done?
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The Dark Sector

• Need to quantify 
amounts and 
properties* of dark 
sector, test GR

• Agreement between 
simulation, 
observation

• Job done?
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Photometric Redshifts

• (u)griz(y) imaging surveys allow ∆zphot ~ 0.03(1 + z), 
or about 100 Mpc/h

• Radial clustering nearly wiped out
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Photometric Redshifts

• (u)griz(y) imaging surveys allow ∆zphot ~ 0.03(1 + z), 
or about 100 Mpc/h

• Radial clustering nearly wiped out
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Spectroscopic Photometric
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Why Photometric 
Surveys?

• More objects at higher redshifts (SDSS has 
~2x107 photoz galaxies; L* observable to z ~ 
0.4)

• Extremely precise measurements

• Upcoming, deeper, wide-field surveys will 
rely primarily on photometry (e.g, Dark 
Energy Survey)

• (Lensing needs high density of background 
sources)
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• “2+1” dimensions”: make measurements in 
photoz bins ~ as wide as photoz error w(θ), 

• project over redshift distribution

• Accurate measurements require careful 
treatment of observational systematics

Clustering with 
Photometric Redshifts

w(θ) =
�

dz1

�
dz2n(z1)n(z2)ξs(µ, rev(θ, z1, z2))
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Clustering depends on 
Color
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Clustering depends on 
Color
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Clustering depends on 
Color
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Clustering of Red and Blue Galaxies

• SDSS DR5 
photozs

• measurements fit 
by parametric 
halo model

• +Segregation of 
blue/red galaxies
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Red/blue Model

• New modeling for red/
blue galaxies

• Place galaxies into 
separate halos as much 
as statistics allow

• Means ~ no mixing in 
low mass halos, some 
mixing in high mass 
halos
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Redshift Space 
Distortions

• Intrinsic velocities of galaxies imply redshift 
space is distorted from real-space

• Small scales - finger of God effect

• Large scales - infall onto clusters

Structure Growth with Redshift 
Space Distortions (RSD)
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Redshift Space 
Distortions

• Intrinsic velocities of galaxies imply redshift 
space is distorted from real-space

• Small scales - finger of God effect

• Large scales - infall onto clusters

Real Space Redshift Space

Structure Growth with Redshift 
Space Distortions (RSD)
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Real/Redshift Space Clustering
ξ(

r)
Real Space
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Real/Redshift Space Clustering
ξ(

r)
Real Space

Reid, 
Samushia 
et al. (in 
prep.)
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Redshift Space Clustering

• Large scale distortions can be modeled 
with linear theory:

• GR predicts γ = 0.557

P (k, µ) = (1 + fµ2)2P (k)

µ = cos(θ); f = dln(D)/dln(a) ∼ Ωγ
matter
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RSD with Photozs?

• Projections for 
Dark Energy 
Survey

• Implies DES can 
measure fangular clustering

Ross et al. 2011
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RSD with Photozs?
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Dark Energy 
Survey
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Baryon Acoustic 
Oscillations (BAO)
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Baryon Acoustic Oscillations

Percival et al.(2009)

BAO in SDSS DR7 7

Figure 2. Average likelihood contours recovered from the analysis of three
power spectra (top panel) and six power spectra (bottom panel) mea-
sured from 1000 LN density fields. Contours are plotted for −2 lnL =
2.3, 6.0, 9.2, corresponding to two-parameter confidence of 68, 95 and
99 per cent for a Gaussian distribution. Contours were calculated after in-
creasing the errors on the power spectrum band powers as described in
the text. Solid circles mark the locations of the likelihood maxima clos-
est to the true cosmology. We have plotted the likelihood surface as a
function of DV (z)/Mpc, for fixed rs(zd) = 154.7 Mpc, to show distance
errors if the comoving sound horizon is known perfectly. The values of
DV for our input cosmology are shown by the vertical and horizontal solid
lines.

are shown in Fig. 3, where we plot the measured power spectra
divided by the spline component of the best-fitting model. In our
default analysis we fit power spectra from six redshift slices as
described in Section 3, using a spline for DV (z) with two nodes
at z = 0.2 and z = 0.35, respectively. We assume a fixed BAO
damping scale of Ddamp = 10 h−1 Mpc and fit to all SDSS and
non-overlapping 2dFGRS data. The effect of these assumptions is
considered in Section 8. The resulting likelihood surface is shown in
Fig. 4 as a function of DV (z) Mpc−1, for fixed r s(zd) = 154.7 Mpc,
to show distance errors if the comoving sound horizon is known
perfectly. The constraints should be considered measurements of
r s(zd)/DV (z) (see Section 4). Fig. 4 reveals a dominant likelihood
maximum close to the parameters of a !CDM cosmology with

Figure 3. BAO recovered from the data for each of the redshift slices (solid
circles with 1σ errors). These are compared with BAO in our default !CDM
model (solid lines).

#m = 0.25, h = 0.72 and #bh
2 = 0.0223. There are also weaker

secondary maxima at lower DV (0.2), which are considered further
in Section 8.8. The significance of the detection of BAO corresponds
to $χ 2 = 13.1, which is approximately 3.6σ . As this is relative to
an arbitrary smooth model, this test is more general, and hence the
significance cannot be directly compared with results presented by
Eisenstein et al. (2005).

We have matched the likelihood surface shown in Fig. 4 around
the dominant maximum to a multivariate Gaussian model. Using

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS
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BOSS-trained DR8 
Photozs

Ross, A. J. et al. 2011 (ArXiv:1105:2320)

• Used over 
100,000 BOSS 
spectra

• Over 1,000,000 
photozs over 
10,000 sq degrees

Ho,  S.  et al. 2012 (ArXiv:1201:2137)
Seo,  H.  et al. 2012 (ArXiv: 1201:2172)
de Putter,  R.  et al. 2012 (ArXiv: 1201:1909)
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SDSS DR9 BOSS Specz ‘CMASS’ Sample

• Targeted 1 million galaxies      
8    8600 sq degrees of NGC
    3100 sq degrees of SGC

• DR9 footprint 3345 sq. deg 
     21% in Southern galactic cap

• 270,000+ redshifts 0.43<z< 0.7

• Redshift completeness >98% 

• Public July 2012
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BAO Comparison

Seo et al. (2012)

DR8 Photoz

4.5%

BOSS Galaxy Clustering (in prep.)

2%
DR9
specz
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Observational Systematics
• Object classification

• Star/galaxy/quasar

• Use probabilities

• Galactic foregrounds
• Stars, Galactic Extinction

• Observing conditions
• Seeing, Sky Background,  Airmass

• Photometric offsets, varying dust law?

• See Schlafly et al. (2011a,b)
Ashley J Ross                   LBNL RPM                Jan 19th, 2011
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Stars

• ~3% stellar contamination ➙ 
nCMG should increase with nstar

• Opposite is observed

• “removing” stellar 
contamination ➙ huge anti-
correlation
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Stars Occult Area

Galaxies around stars 17.5 < i < 19.9 
(23 million stars)
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Stars Occult Area

Galaxies around stars 17.5 < i < 19.9 
(23 million stars)

DES Simulated Data

(courtesy N. Sevilla)
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Correcting for Stars
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General Solution

• If you can make a map

• 1) Assume intrinsic cross-correlations are 
0, subtract measured contribution

• 2) Assume intrinsic no local relationship, 
weight appropriately 
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w(θ) for photoz shells
• fit for bias with 

basic ΛCDM 
model 

• with corrections: 
χ2/d.o.f = 0.79, 
1.8, 0.99, 1.0

• without 
corrections: χ2/
d.o.f = 0.99, 3.9, 
7.0, 6.4

0.45 < z < 0.5

0.45 < z < 0.5

0.5 < z < 0.55

0.6 < z < 0.650.55 < z < 0.6
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Spectroscopic Sample

•Again went through all 
potential systematics
•Most important: Correct 
for presence of stars via 
weights linear fit to ng(nstar) 
relationship

After correction

Ross et al. (in prep.)
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BAO position unaffected

• photoz: position 
changes by 0.1σ, χ2/
dof 1.2->1.1

• specz, ≪0.1σ (X. 
Xu, W. Percival)

Corrections

No corrections

 corrections

Seo et al. (2012)
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Lessons for the future
• Approach DES carefully

• Spectroscopic overlap
• Fix object detection ahead of time
• re-apply BOSS photoz methods
• coordinate with weak lensing

• Issues in BigBOSS target catalog can be 
addressed ahead of time

• BOSS systematics found during photoz 
project
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Conclusions
• Galaxy clustering encodes a wealth of cosmological 

information!

• (faint) foreground stars present challenge for all 
forthcoming surveys

• Using photometric redshifts presents challenges

• ...but the information is still there

• BAO position appears robust to observational 
systematics

• BOSS photoz sample is best existing sample...results 
came out this week!

• BOSS DR9 cosmological implications coming soon!
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