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Beyond the Standard Models of…

• Lyman-alpha forest probes early Universe from small to large scales

• Need to disentangle cosmology and astrophysics of intergalactic medium

• High-density hydrogen absorbers & patchy reionisation 

• Need “emulator” for statistical inference with cosmological simulations

Cosmology Particle physics



The Lyman-alpha forest



Lyman-alpha forest surveys
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Redshift Surveys
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2.0 < z < 3.5

BOSS galaxies
1.3M spectra 
0.2 < z <  0.7

Overdensity
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The Lyman-alpha forest traces matter at high redshift
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Motivation II: small scale clustering
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Lyman-α forest offers a 
unique window to study 

small scale clustering

Combined with CMB, it 
allows us to study:

• dark matter properties
• neutrino mass
• shape of primordial P(k)

Lyman-α Forest

The Lyman-alpha forest traces linear-order matter fluctuations
at high redshift from large to small scales
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FIG. 7: Evolution of the normalized perturbation growth fac-
tor g ≡ (δb/a) at comoving scales of k = 0.1, 0.5 hMpc−1

for different axion masses (colored curves). Here we use an
evolving-axion-mass model with atr = 7× 10−5. Black curves
represent the growth factor of the fiducial ΛCDM model.

FIG. 8: Matter and CMB temperature anisotropy power spec-
tra expected in a model containing small fraction of massive
neutrino component, where we have used the CAMB soft-
ware [37]. Here we consider massive neutrinos (Nν = 3.04)
whose mass ranges from mν = 0.154 eV (Ων0 = 0.01; red)
to 0.769 eV (Ων0 = 0.05; violet curves), with a relation
(Ων0 + Ωc0)h

2 = 0.1123. Black curves represent the power
spectrum of the fiducial ΛCDM model with massless neutri-
nos. The curves in the bottom panels indicate the ratios of
powers relative to the ΛCDM model prediction.

compare the small-scale suppression of our low-mass ax-
ion model with those models. In Fig. 8 we present the
case of massive neutrinos contributing as the hot dark
matter added to the dominant CDM model. The results
are similar to those found in Ref. [36].
Although the low-mass axion dark matter model shows

a sharp damping in the baryonic matter power spectrum,
the CDM model with a small fraction of massive neutri-

nos gives a damping of power with almost constant fac-
tor at k > 0.1 hMpc−1. Besides, the CMB anisotropy
power spectrum is very sensitive to the massive neutrino
contribution; the massive neutrinos affect all the acous-
tic oscillatory features at intermediate and high angular
scales (ℓ ! 100). On the other hand, the behavior of the
axion dark matter model is quite different, and is almost
insensitive to the axion mass except at the higher multi-
poles. In the low-mass axion case the changes from the
CDM in both power spectra occur only at scales smaller
than the axion Jeans scale.

V. DISCUSSION

In this work, we have studied effects of extremely low-
mass (m ≤ 10−24 eV) axion on the baryon matter density
and the CMB anisotropy power spectra, and the pertur-
bation growth based on the full relativistic linear per-
turbation analysis. With a low mass, however, the basic
assumption about the coherently oscillating scalar field
is inevitably broken in the early universe (H/m ≫ 1).
We have introduced the simple evolving-axion-mass-in-
the-early-universe model to avoid this problem.
We showed that axion mass smaller than 10−24 eV in-

duces the characteristic significant damping in the baryon
density power spectrum on scales smaller than the axion
Jeans scale, and changes in the higher multipole in the
CMB anisotropy power spectra. Except for small changes
in the higher multipoles (ℓ ! 1000) corresponding to the
scales smaller than the axion Jeans scale, the CMB power
spectrum remains the same as the CDM case. The CDM
nature is also preserved in the baryon matter power spec-
trum above the axion Jeans scale. We showed that the
small-scale damping nature of our low-mass axion model
differs from the one expected in the CDM model mixed
with the massive neutrinos as a hot dark matter compo-
nent.
Whether the small-scale damping of the baryon mat-

ter density power spectrum can help alleviating the ex-
cess small-scale clustering problem of the CDM model
requires further studies in the nonlinear clustering prop-
erties of the light mass axion.
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Massive neutrinos
any mass value, neutrinos leave a signature on the CMB angular power spectrum through the inte-
grated Sachs-Wolf e↵ect and through lensing [3, 4]. The latest limit on

P
m⌫ from CMB data alone

is at the level of 0.7 eV [5].
Ly↵ data alone have sensitivity to

P
m⌫ at the level of about 1 eV due to the fact that the

scales probed by Ly↵ forests are in the region where the ratio of the power spectra for massive to
massless neutrinos is quite flat (cf. Figure 1). However, a tight constraint on

P
m⌫ can be obtained

by combining CMB data, which probe the initial power spectrum una↵ected by
P

m⌫, and Ly↵ data,
which probe the suppressed power spectrum. Thus, Ly↵ measures the power spectrum level, defined
by �8 and ⌦m, CMB provides the correlations between these parameters and

P
m⌫, and the joint

use of these two probes significantly improves the constraint on
P

m⌫ compared to what either probe
alone can achieve.
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Figure 1: Linear theory prediction for the matter power spectra with massive neutrinos, normalized
to the corresponding massless neutrino case. The grey zone delimits the range of k covered by the 1D
Ly↵ flux power spectrum from the BOSS survey.

The layout of the paper is as follows. The first part of section 2 presents the upgrades in the Ly↵,
CMB and Baryon Acoustic Oscillation (BAO) data sets used for this work. The second part summa-
rizes a number of improvements in the methodology: changes in the accounting of the uncertainties
of the hydrodynamical simulations, and updates of the likelihood parameters to allow for additional
freedom in the IGM model or in the instrumental systematic e↵ects. The main objective of section 3.1
is to present what Ly↵ data alone have to say about cosmology. The base model we consider is a flat
⇤CDM cosmology with massive neutrinos, thereafter referred to as the base ⇤CDM⌫ cosmology.
We start by giving the constraints measured on the five relevant parameters (�8, ns, ⌦m, H0,

P
m⌫),

and we briefly discuss the values of the ‘nuisance’ parameters. In section 3.2, we include additional
data, namely several configurations of CMB data and, occasionally, BAO measurements. We present
the results obtained on the parameters of our base ⇤CDM⌫ cosmology with various combinations of
these data sets. Finally, we discuss extensions to the base ⇤CDM⌫ cosmology. We present how Ly↵
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Ultra-light axion (fuzzy) dark matter [FDM]
Light bosonic dark matter with SDSS Lyman-↵ forest 5

ear power spectrum on the resulting Lyman-↵ flux, we use
a single set of ⇤CDM cosmological parameters from Ade
et al. (2014). They are in accordance to the central values
used in Baur et al. (2016) : h = 0.675, ⌦M = 0.31, ns = 0.96

and �
8

= 0.83. Note that we checked that, as for WDM, the
cuto↵ in the linear matter power spectrum induced by the
FDM models considered here does not change significantly
the value of �

8

, for a given primordial scalar perturbation
amplitude.

The initial conditions are set at z = 30 with the 2LPTIC

software, starting from the linear matter power spectrum as
computed by AxionCAMB for this redshift. The (fuzzy) dark
matter fluid is then treated as a collection of fixed-mass point
particles. The baryon fluid is evolved using the Smoothed
Particle Hydrodynamics technique, with stars created in
cold and dense baryon environments. Of importance for the
Lyman-↵ forest, we model the IGM heating by the UV back-
ground light, using internal Gadget heating rate parameters
which result in the redshift-dependent IGM temperature-
density relation

T
IGM

= T
0

(z)(1 + �⇢/⇢)�(z)�1 (11)

As for the case of cosmological parameters, we adopt here
fixed benchmark parameters such that T

0

(z = 3) = 14000 K
and �(z = 3) = 1.3, which are in agreement with the mea-
surements from Becker et al. (2011).

From Gadget snapshot files in the redshift range z =
4.6 � 2.2 adapted to SDSS Lyman-↵ data, we infer the line-
of-sight-averaged one-dimensional Lyman-↵ flux power spec-
trum. This observable is defined from the fluctuations of
quasar’s transmitted flux fraction, �'(�) = '(�)/'̄� 1, where
'̄ is the mean transmitted flux fraction at the Hi absorber
redshift, computed over the entire sample. We use here again
a single H i optical depth model, which is known to roughly
match existing data:

⌧
e�

= ↵ ⇥ (1 + z)� with↵ = 0.0025 and � = 3.7 (12)

In practice, the Lyman-↵ flux power spectrum is inferred
in the range adapted either to published SDSS spectra,
k = 10

�3 � 2 ⇥ 10

�2 s km�1, or to higher-resolution spec-
tra, k = 10

�3 � 0.1 s km�1. We exploit the splicing technique
as described in Borde et al. (2014). It consists in combining
the results of two N-body simulation outputs, one of high
resolution with 768

3 DM particles in a 25 h�1 Mpc box, and
one on larger scales, with 768

3 particles in a 100 h�1 Mpc
box, making use of a third low-resolution simulation with
128

3 particles in a 25 h�1 Mpc box.
Simulations were computed for four di↵erent values of

ma between 3.4⇥ 10

�22 and 4.1⇥ 10

�21 eV using AxionCAMB.
To assess FDM-related systematic e↵ects, an additional sim-
ulation was run with T(k) given by the formula from Hu et al.
(2000).

3 RESULTS

Before comparing the predictions for the one-dimensional
Lyman-↵ flux power spectrum with measured spectra, we
first provide a discussion of the quantum pressure term,

Figure 2. Slice views of dark matter properties at z = 2.6 from
our (768

3 particles, 25h�1 Mpc) simulations. Coordinates are in
h�1 Mpc. Top : comparison of the DM density fields for ma =

3.4 ⇥ 10

�22 eV (left) with respect to CDM (right). Bottom left :
gravitational potential, with color scale in the range from �4 to
1 ⇥ 10

10 (m/s)2. Bottom right : quantum pressure for ma = 3.4 ⇥
10

�22 eV, with color scale in the range from �4 to 8 ⇥ 10

5 (m/s)2.

which was ignored in the N-body simulations. All the cal-
culations presented here are therefore a posteriori and only
hold if the dynamical impact of quantum pressure in the
non-linear regime is negligible.

3.1 Quantum pressure

Fig. 2 illustrates the properties of the DM fluid, derived
from the Gadget snapshots for z = 2.6 at scales of a few
Mpc, which correspond to the median redshift and smallest
comoving scales of relevance for the SDSS Lyman-↵ flux.
The top panel provides a by-eye comparison of the DM mass
density for CDM with respect to the lowest-mass FDM used
in the N-body simulations, ma = 3.4 ⇥ 10

�22 eV. The severe
attenuation of small-scale structures due to the linear cuto↵
in the FDM scenario is evident.

In order to assess the relative importance of quantum
pressure, the bottom panel compares the gravitational po-
tential � (left), as calculated explicitly with Gadget, with
the quantum pressure Q/ma (right). Both are expressed in
(m/s)2. The Q term is estimated from the numerical laplacian
of the density field ⇢, which is itself obtained by smoothing
the DM point particle distribution with a kernel adapted to
the local density of DM particles in the simulation, so that
higher resolutions are obtained in higher density regions. We
checked that the resulting Q distributions are stable with
respect to the kernel size parameter, which means that our
estimation for Q is not severely biased by shot-noise related
fluctuations. On the other hand, we find that the gradient
estimator is limited by the simulation resolution in regions

MNRAS 000, 1–11 (2017)

FIG. 7: Left panel: the 1D flux power spectra from the simulations CDM (in solid lines), FIC

(in dot-dashed lines), FDM (in dashed lines) and F23 (in dotted lines), with the data from BOSS

(darker color) and XQ-100 (lighter color) at di↵erent redshifts (di↵erent color). The ordinate axis

is the wavenumber k times the 1D flux power spectrum and the abscissa axis is the corresponding

wavenumber. Right panel: the impact of non-linear e↵ect on the 1D flux power spectrum. The

ordinate axis is the ratio of 1D flux power spectra of the simulations FDM (in dashed lines), FIC

(in solid lines) and F23 (in dotted line) to that of the simulation CDM and the abscissa axis is

the corresponding wavenumber. The colors represent di↵erent redshifts.

small scales is even more significant than all other simulations due to its larger QP.

In the right panel of Fig. 6, we show the ratio R(k) of the 3D power spectram from
the simulations FDM, FIC and F23 to that of simulation CDM. One can see that the QP
suppresses the power spectrum by 5% relative to the simulation FIC at k > 10hMpc�1 for
three di↵erent redshifts z = 3.0, 3.6, 4.2. The e↵ect of QP in the simulation F23 is clearly
more significant than the simulation FDM.

The 1D flux power spectra are shown in the left panel of Fig. 7 for comparison with the
data of BOSS and XQ-100 at three di↵erent redshifts z = 3.0, 3.6, 4.2. The solid, dot-dashed,
dashed and dotted lines represent 1D flux power spectra from the simulations CDM, FIC,
FDM and F23, respectively. The dots and error bars are the data from BOSS in darker
color and XQ-100 in lighter color. At the small-scale region k > 10�2 km�1 s, the 1D flux
power spectra for the simulations FDM and F23 are relatively more suppressed than those
of CDM and FIC. Although the simulation FIC di↵ers from CDM in the initial condition,
their di↵erence in spectrum is still small.

The right panel of Fig. 7 shows the ratio RF (k) of the 1D flux power spectra of the
simulations FIC, FDM and F23 to that of the simulation CDM. The degree of suppression
is up to 10% at k ' 10�1 km�1 s for the simulation FDM. Additionally, the 1D flux power
spectrum of the simulation F23 is suppressed even more than the simulation FDM. On the
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Armengaud et al. (2017); Zhang et al. (2017); Baur et al. (2016); Rogers et al. (in prep.)

+ warm dark matter [WDM] / interacting dark matter

Figure 4. Top & Middle: Visual inspection (see caption of Fig 1) at z = 2.2, 3.4 and 4.6 of the best-guess,
i.e., CDM, model (top) and of a simulation assuming a 500 eV DM-particle mass (middle) for visualization
purposes. Panels are 8 h�1 Mpc across. Bottom: Ratio of the WDM to the CDM Ly-↵ transmitted flux
power spectra at redshifts z = 2.2, 3.4 and 4.6, normalized to identical �8, for our mX = 2.5 keV (left) and
5 keV (right) grid values. Line thickness encodes simulation uncertainty (statistical).
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Dense hydrogen absorbers



K. Rogers et al., 2018, MNRAS, 474, 3032
K. Rogers et al., 2018, MNRAS, 476, 3716



High column density hydrogen absorbers are
leading “foreground” to the Lyman-alpha forest



Illustris cosmological hydrodynamical simulations



Densest systems are identified and masked
but there always remains a residual contaminationBOSS DR9 Lyα Forest Sample 9

Fig. 7.— The spectrum of a Lyα forest sightline with a DLA at
zdla = 2.477, with a neutral hydrogen column density log10 NHI =
21.19. The red spectrum shows the same spectrum after applying
the steps described in § 4.3: the central equivalent width W (Equa-
tion 4) of the DLA has been masked, while remaining pixels have
been corrected for damping wings (Equation 5). For clarity, both
spectra have been smoothed with a 3-pixel mean boxcar function.

are used to refine the redshift. The second automated
method, described in Carithers et al. (2012), is based on
a Fisher Discriminant (Fisher 1936) machine-learning al-
gorithm. After an initial screening that identifies spectral
regions that are consistent with zero flux density and in-
consistent with the continuum, a fit to a Voigt profile
is performed. The errors and chi-squares from the fit,
along with the initial screening probability, are passed to
a Fisher Discriminant that has been trained on the visual
identification DLA sample. Metal lines, when present,
are used by this method as well to refine the DLA red-
shift.
Any DLA recognition algorithm must balance the re-

quirements for efficiency and purity, and the most se-
vere challenge is in the regime of low SNR and low col-
umn density. Each of the three methods has strengths
and weaknesses in this regard. To retain both high effi-
ciency and high purity, we define a concordance catalog
(Carithers et al. 2012) consisting of all DLAs found by at
least two of the three methods (in practice, the majority
are found by all three techniques). In those cases where
a DLA is found by both the template and FDA methods,
the average of the two redshifts and column densities is
used. Both these methods have been tested on the same
set of mock spectra (Font-Ribera et al. 2012) that have
DLAs artificially inserted; both yield detection efficien-
cies of > 95% for DLAs with log10 NHI > 20.3 in spectra
with continuum-to-noise ratios36 of CNR > 2 per pixel.
For each DLA within this concordance catalog, we

mask the wavelength region corresponding to the equiv-
alent width (Draine 2011):

W ≈ λα

[

e2

mec2
NHIfαλα

(

γαλα

c

)]1/2

, (4)

where λα = 1216 Å is the rest-frame wavelength of the
hydrogen Lyα transition, e is the electron charge, me
is the electron mass, c is the speed of light, NHI is the

36 Where the continuum is, in this case, defined separately within
each algorithm; see Noterdaeme et al. (2012) and Carithers et al.
(2012) for details.

H I column density of the DLA, fα is the Lyα oscillator
strength, and γα is the sum of the Einstein A coefficients
for the transition. Pixels that are masked due to DLAs
are flagged by maskbit 3 in our combined mask.
Beyond this region, we correct for the damping wings

of the DLA by multiplying each pixel in the spectrum
with exp(τwing(∆λ)), where

τwing(∆λ) =
e2

mec3
γαλα

4π
fαNHIλα

(

λ

∆λ

)2

(5)

and ∆λ ≡ λ − λα is the wavelength separation in the
DLA restframe. Each of the spectra in our sample in-
cludes a vector, DLA_CORR, that stores the damping wing
corrections ϵdla ≡ exp(τwing); this is set to unity in spec-
tra without intervening DLAs. This correction vector
should be multiplied into the flux and noise vectors; al-
ternatively, users might opt to make more stringent cuts
based on the value of the damping wing corrections. Fig-
ure 7 shows a DLA in our sample, along with the masks
and corrections that we have applied to correct for it.
The Z_DLA and LOG_NHI fields in our catalog (Table 3)

lists the DLA absorber redshift and base-10 logarithm of
the neutral hydrogen column density (in cm−2), respec-
tively, for each spectrum in our sample. Both fields are
set to −1 in spectra where no DLAs are detected.

4.4. Quasar Continua

In any Lyα forest analysis, the transmitted Lyα flux
must be extracted by dividing the observed flux by an
estimate for the intrinsic quasar continuum. This is a
non-trivial step even in high-SNR spectra. Traditionally,
power-law extrapolation from λrest > 1216 Å has been
used to estimate the quasar continuum in noisy spectra
(e.g. Press et al. 1993). However, this technique is now
known to be unreliable due to a break in the quasar con-
tinuum at λrest ≈ 1200Å (Telfer et al. 2002). Moreover,
the uncertain blue-end spectrophotometry in BOSS (see
§ 5.1) makes continuum extrapolations highly unreliable.
It is thus necessary to use the information in the Lyα for-
est itself to estimate the continuum.
For each BOSS DR9 quasar spectrum that satisfies our

selection criteria in § 3, we provide a continuum estimate
using a modified version of the mean-flux regulated prin-
cipal component analysis (MF-PCA) technique described
in Lee et al. (2012). This is technique essentially a two-
step process: an initial PCA fit to the λrest > 1216 Å
region of the quasar spectrum to predict the shape of
the Lyα forest continuum, followed by a ‘mean-flux reg-
ulation’ step to ensure that the continuum amplitude is
consistent with published constraints on the Lyα forest
mean-flux, ⟨F ⟩(z).

4.4.1. PCA Fitting

The first step in our continuum estimation process is
to fit PCA templates to the quasar spectrum redwards
of its Lyα emission line, in the λrest = 1216− 1600 Å.
However, since intervening metal absorption in that

region might bias our continuum fit, we first execute a
procedure to identify and mask these absorbers prior to
fitting the continuum. For this purpose, we follow the
procedure described in Lundgren et al. (2009). First, we
define a pseudo-continuum by using a variation of a mov-
ing mean that robustly fits both the quasar emission lines
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Figure 5. Evolution of the Ly↵ forest e↵ective optical depth. Left panel: The dark blue data points show our IGM opacity
measurements. The green and orange data points are measurements of the optical depth performed by Becker et al. (2015),
orange indicating the measurements of ULASJ0148 + 0600. This data set we consider the master compilation sample. The
large red data points show the mean redshift evolution averaged over bins of �z = 0.25, their uncertainties are determined via
bootstrapping. The grey underlying region shows the predicted redshift evolution from radiative transfer simulations assuming a
uniform UVB model. We have simulation outputs in steps of �z = 0.5 and use a cubic spline function to interpolate the shaded
regions between the redshifts of the outputs. The light and medium grey shaded regions indicate the 68th and 95th percentile
of the scatter expected from density fluctuations in the simulations, whereas the dark grey region shows any additional scatter
due to ⇠ 20% continuum uncertainties. Right panel: Compilation of all opacity measurements found in the literature along
quasar sightlines that are not in our data sample and that have been calculated within similar spectral bin sizes.

Similar to the individual ⌧e↵ measurements, we adopt a
limit if the mean flux in the bin is measured with less
than 2� significance (where � is here the bootstrap er-
rors on the mean flux).
Note that we do not take any systematic errors on

the mean flux measurements into account that could,
for instance, result from uncertainties in the continuum
estimation. The dark grey regions give an estimate of
the additional scatter expected due to continuum uncer-
tainties of ⇠ 20%, which are negligible at high redshift,
where the transmitted flux is low and the scatter is dom-
inated by fluctuations along di↵erent sightlines (Becker
et al. 2015; Eilers et al. 2017b).
The right panel of Fig. 5 compares our data set

to opacity measurements from additional sightlines
from the literature that are not in our data sam-
ple. The additional data points come from the sight-
lines of SDSS J0144 � 0125 and SDSS J1436 + 5007
(Fan et al. 2006), CFHQSJ1509 � 1749 (Willott
et al. 2007), ULASJ1120 + 0641 (Barnett et al.
2017), PSOJ006.1240 + 39.221 (Tang et al. 2017), and
J0323�4701, J0330�4025, J0410�4414, J0454�4448,
J0810+5105, J1257+6349, J1609+3041, J1621+5155,
J2310 + 1855 (Bosman et al. 2018). In most of these

analyses the bins were chosen to be �z = 0.15, following
Fan et al. (2006). This bin size covers roughly the same
spectral region as the chosen bin size of 50 cMpch�1 in
our analysis and the one by Becker et al. (2015) at z ⇠ 6,
but in the redshift interval of 5 . z . 7, the bin size
changes quite significantly. Overall the agreement be-
tween the various measurements with our new analysis
is good, but we chose not to add these measurements to
the master compilation, because of the di↵erent path-
lengths used to construct the measurements, very low
S/N data or the variety of di↵erent instruments and
data reduction pipelines used to obtain the spectra,
which enlarges the systematic uncertainties on these
measurements (see § 5).

5. COMPARISON TO OTHER STUDIES

For several quasar sight lines in our data sample the
optical depth has been measured previously by Fan et al.
(2006) and Becker et al. (2015), and more recently by
Bosman et al. (2018). However, the quality of the data
and the methods to analyze the data di↵er. Here, we
carry out a detailed comparison of our methods and
measurements to previous work, and discuss potential
systematic uncertainties (§ 5.1) and resulting discrepan-

The observed scatter in Lyman-alpha opacities at z > 5 
cannot be explained by density fluctuations alone
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Eilers et al. (2018)



There is un-extracted information in
the full distribution of transmission spikes
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Figure 8. Typical example of Ly↵ forest transmission spikes at
z ⇠ 6 (red) spanning comoving distance 40Mpc/h, and the same
forest segment with observational noise added.

Mock data are generated from the above simulation pipeline
with a fiducial ionization rate �⇤HI = 2.56 · 10�13s�1, show in
Figure 8. The same pipeline is then used to generate forward
simulations for inferring �HI from those data using DELFI.

7.2 Data compression

In this simple demonstration we compress the flux data-
vector in two stages: First, we compute fifty percentiles of
the 2048 flux values, from 2 to 100 in steps of 2%. This is
motivated by the notion that the most of the information
about the ionization rate should be contained in the PDF of
the flux values, which can be conveniently summarized by a
set of percentiles.

We then compress the vector of percentiles down to a
single summary statistic for �HI using an IMNN. We use a
fully-connected network with three dense layers with 128, 64
and 32 hidden units respectively, and leaky-ReLu activation
functions with activation parameter ↵ReLu = 0.01. For the
training set we use 5000 simulations at the fiducial �⇤HI, and
an additional 5000 random-seed matched simulation pairs
with �HI = �

⇤
HI ± 1 · 10�13 for the derivatives10.

7.3 Priors

We take a uniform prior �HI 2
⇥
0, 6 · 10�13⇤ s�1.

7.4 DELFI set-up

We ran DELFI using the SNL active learning scheme. We
use an ensemble of five neural density estimators: five MDNs
with 1–5 Gaussian components respectively, each with two
hidden layers of 30 hidden units, and again we use tanh ac-
tivations throughout. Simulations were run in batches of 50
for the SNL scheme after an initial Fisher pre-training step
to initialize the networks.

10 Note that given a hydrosimulation box, generating realizations
of Ly↵ segments by taking skewers through the box is inexpensive.
We therefore made no attempt to reduce/optimize the number of
simulations needed to train the IMNN in this case study. We leave
detailed exploration of optimal compression of Ly↵ forsets (eg.,
without pre-compression to percentiles, optimal IMNN architec-
tures, etc) to future work.

7.5 Results

In Figure 9 (right) shows the recovered posterior on the ion-
ization rate �HI; the input value (marked in red) is well
recovered. We find the DELFI ensemble of neural density
estimators converges extremely fast in this case, after only
O(102) (Figure 9; left).

8 CONCLUSIONS AND DISCUSSION

Density-estimation likelihood-free inference (DELFI) imple-
mented using NDEs to learn the sampling distribution of
the data (summaries) as a function of the model parame-
ters, and adaptively acquiring simulations with active learn-
ing, provides an e�cient framework for likelihood-free in-
ference in cosmology. When combined with massive data
compression, high-fidelity posteriors may be achieved from
just O(103) forward simulations for typical ⇠ 6 parameter
inference tasks. Advances in nuisance-parameter hardened
data compression mean that this expected performance may
be preserved irrespective of the presence or number of addi-
tional nuisance parameters that need to be marginalized over
(Alsing & Wandelt 2018a). Even without data compression,
DELFI with NDEs and active learning provides a state-of-
the-art framework for simulation-based inference (although
more simulations will be required for larger, uncompressed
data vectors).

We have introduced pydelfi – a general purpose im-
plementation of DELFI with NDEs and active learning (and
data compression) – available with tutorials and documen-
tation at https://github.com/justinalsing/pydelfi. py-
delfi opens up new possibilities for likelihood-free analy-
ses of complex cosmological data sets, using rich generative
models containing physical and observational e↵ects that
would otherwise be challenging or impossible to include ac-
curately into a traditional likelihood-based analysis.

For standard inference tasks where the form of the
likelihood-function can be assumed known, we note that
pydelfi can actually be faster (and more accurate for
given resources) than MCMC sampling. By turning the in-
ference problem into a low-dimensional density-estimation
task, DELFI e↵ectively builds a fast neural network emula-
tor for the likelihood-function, in a similar spirit to vari-
ational inference. We have shown that this can converge
quickly, after just O(103) simulations for typical problems,
which are typically similar in cost to likelihood evaluations
(for simple likelihoods). Meanwhile, MCMC methods would
typically require many more likelihood calls to yield well
sampled posteriors, for the same number of model param-
eters. The number of simulations to attain convergence for
DELFI in these simple cases may be minimized by using neu-
ral density estimators that correspond exactly to the form
of the known likelihood, eg., a Gaussian with parameter de-
pendent mean and fixed covariance matrix.

An emerging trend in cosmology is to build emulators
for summary statistics for which no robust analytical model
exists, such as the non-linear matter power spectrum on
small scales (Heitmann et al. 2013), 21cm power spectrum
(Schmit & Pritchard 2017; Kern et al. 2017), Lyman-↵ power
spectrum (Rogers et al. 2018; Bird et al. 2018), weak lens-
ing Minkowski functionals (Marques et al. 2018), and many

MNRAS 000, 1–20 (2019)
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Figure 1. Schematic for the three ways of performing density-estimation likelihood-free inference from a set of simulated data (summary)
parameter pairs {t, ✓ }: (1) learn a flexible parametric model for the joint density p(✓, t), (2) learn a flexible parametric model for the
conditional density p(✓ |t) (as a function of t), (3) learn a flexible parametric model for the conditional p(t |✓) (as a function of ✓). In
each case, the goal is to learn the (conditional) density in the relevant region of parameter space, and take a slice at the observed data
(summaries) to yield the target posterior or likelihood.

(i) Run simulations at di↵erent parameter values ✓ to ob-
tain simulated parameter-data pairs {✓, t},

(ii) Fit a parametric conditional density estimator
p(t|✓; w) to the simulations {✓, t},
(iii) Evaluate the estimated conditional density at the ob-

served data t

o

to obtain the (learned) likelihood function
p(t

o

|✓; w).
An e�cient algorithm for performing DELFI must then ad-
dress three key questions:

(i) How do we parameterize the conditional density esti-
mator p(t|✓; w) in a sensible way?

(ii) How do we run simulations in the most relevant parts
of parameter space for the ultimate target, p(t

o

|✓; w), to best
use the available resources?

(iii) If the uncompressed data vector d is high-
dimensional, how can we compress it e↵ectively to some
small set of informative summaries d ! t to reduce the
dimensionality of the density-estimation task, and hence re-
duce the number of simulations required?

In this paper we use neural density estimators (NDEs) as
a flexible and e�cient conditional density estimation frame-
work for DELFI (based on Papamakarios & Murray 2016;
Papamakarios et al. 2018; Lueckmann et al. 2018), employ-
ing ensembles of networks (with di↵erent initializations and
architectures) to give robustness against small training sets
and architecture choice. We give an overview of NDEs and
network ensembles in §2.2 and 2.3.

For e�cient acquisition of simulations, we use active
learning, allowing the NDEs to call the simulator to run
new simulations on-the-fly, based on the current likelihood-
surface approximation. We discuss active learning strategies
in §2.4.

We review key data compression schemes for accelerat-
ing DELFI in §3 (approximate-score compression, and deep
network compression schemes).

2.2 Neural density estimators

Neural density estimators (NDEs) provide flexible paramet-
ric models for conditional probability densities p(t|✓; w), pa-
rameterized by neural networks with weights w, which can
be trained on a set of simulated data-parameter pairs {t, ✓}.

In this section we review two classes of NDEs that have
proven useful in the context of likelihood-free inference: mix-
ture density networks (MDNs; Bishop 1994) and masked au-
toregressive flows (MAFs; Papamakarios et al. 2017). Note
this section assumes basic background knowledge of neural
networks – see eg., Bishop (2006) for a comprehensive re-
view.

2.2.1 Mixture Density Networks (MDN)

Mixture density networks constitute a class of models for
the conditional density p(t|✓; w) where the distribution for t

at any given ✓ is given by a mixture model, and the relative
weights and properties of the mixture components are all
free functions of ✓, parameterized by a neural network with
weights w. For example, a Gaussian mixture density net-
work3 defines the following conditional density estimator,

p(t|✓; w) =
nc’
k=1

r
k

(✓; w)N
h
t | µ

k

(✓; w),C
k

⌘ ⌃
k

(✓; w)⌃T
k

(✓; w)
i
,

(1)

ie., an n
c

component Gaussian mixture model where the
component weights {r

k

(✓; w)}, means {µ
k

(✓; w)}, and covari-
ance factors4 {⌃

k

(✓; w)} are all functions of ✓ parameterized
by a neural network with weights w.

3 We will henceforth take MDN to mean Gaussian MDN (al-
though other mixture models may be useful in certain situations).
4 To avoid redundancy from the positive-definiteness of the co-
variance matrices, it is practical if the neural network parameter-

MNRAS 000, 1–20 (2019)
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Figure 1: Cartoon of the information maximising neural network architecture. During training, each simulation d

s,fid
i and

each simulation made with a varied fiducial parameter, ds fid±
i , is passed through the same network (all the weights and biases

are shared). The output of the network for each simulation, x

s fid
i , is used to calculate the covariance, Cf, and each of the

network outputs from the varied simulations, xs fid±
i , are used to calculate the derivative of the mean, µf,↵. The network uses

@⇤/@aL = �|F|+ |Cf| as the error of a reward function which is maximised through back propagation. The reward function is
back propagated only through a selection of networks which use the simulations created at the fiducial parameter value, xs fid

i .
The weights and biases are updated using the mean of the back propagated error at each weight and bias, @⇤/@wl and @⇤/@bl.
Once trained, a summary of some data can be obtained using a simple artificial neural network with the weights and biases
from the training network.

domain can be misleading about a parameter in the fre-
quency domain. We are show that the non-linear sum-
mary avoids this problem and is more informative.

A. Summarising Gaussian signals

A simple toy model can be constructed where linear
combinations of the data are unable to provide informa-
tion about parameters.

Consider an experiment which measures nd = 10
data points which are drawn from a zero-mean Gaus-
sian where the variance, # = �2, is not perfectly known,
d =

�
di x N (0,#)

�� i 2 [1, nd]
 
. The likelihood is writ-

ten

L (d|#) =
ndY

i=1

1p
2⇡#

exp


� 1

2#
d2i

�

=
1

(2⇡#)
nd/2

exp

"
� 1

2#

ndX

i=1

d2i

#
, (6.1)

such that

�2 lnL (d|#) = 1

#

ndX

i=1

d2i + nd ln [2⇡#] . (6.2)

From here it can be seen that a single number, the sum
of the square of the data

x =

ndX

i=1

d2i , (6.3)

Charnock et al. (2018); Rogers & Alsing (in prep.)

IMNN + DELFI
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Gaussian process model allows probabilistic interpolation 
of cosmological simulations

f(x) ⇠ N (0,K(x,x0; ✓))
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We need an emulator
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Test simulation A Test simulation B

Lyman-alpha forest flux power spectrum
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Quadratic polynomial interpolation Latin hypercube 
Gaussian process emulator

Smaller emulator error propagates
to better parameter constraints

dτ0 τ0 ns AP [x 109] HS HA h dτ0 τ0 ns AP [x 109] HS HA h



Can we actively construct the training set?

Bayesian optimisation



We need a balance between

Exploration

Exploitation

vs

where interpolation error 
is large

where posterior probability 
is large
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Can also optimise emulator in “batches”



Bayesian optimisation concentrates 
training samples in areas of 
high posterior probability



Batch Bayesian optimisation

• Many simulations too costly to run in serial

• Must choose batch of simulations simultaneously from acquisition function 

• Can update uncertainty as Gaussian process variance independent of output

21

5

0

FIG. C.3. bolfi at work after 20 acquisitions for the Supernovae cosmology problem. Top panels. Isocontours of the Gaussian
process model for the discrepancy �(⌦m,w). The mean (left) and variance (right) are shown in arbitrary units. The red dots
mark the location of the training parameters (⌦m, w). Bottom panels. Isocontours of the aquisition surfaces built from the
Gaussian process, using two di↵erent acquisition rules: the expected improvement (which is maximised, left), and the expected
integrated variance (which is minimised, right). Units are arbitrary. The location of the next acquisition (i.e. the optimiser) is
marked by the cross, and the contours of the exact posterior are plotted as dashed gray lines for reference. The initial training
set is composed of 20 samples, and the expected integrated variance has been used for the 20 acquisitions shown.

where c is the speed of light in vacuum and H0 ⌘
100h km s�1 Mpc�1.

3. Forward-modelling

The data model described in the previous section can
be simulated forward by the taking the following opera-

tions successively:

(⌦m, w) x P (⌦m, w|!,S), (C4)

(↵,�,MB, �M) x P (↵,�,MB, �M |M), (C5)

DL(zO) x P (DL(zO)|⌦m, w), (C6)

d x P (d|DL(zO),↵,�,MB, �M,mO). (C7)

The last two steps are deterministic: in equation (C6),
the luminosity distance at the observed redshifts is com-
puted via equation (C3), and in equation (C7), the pre-

dicted data d(⌦m,w) ⌘
⇣
mk

B,(⌦m,w)

⌘
come from equations



Batch optimisation can make 
more efficient use of 

computational resources



But is Bayesian optimisation more efficient than the 
“brute force” approach?



Bayesian emulator optimisation is 
more accurate with fewer simulations



Other emulators of the cosmic large-scale structure

• Dark matter & halo statistics — small-scale non-linear matter power 
spectrum (Heitmann et al. 2009); halo mass function (McClintock et al. 2018) 

• Galaxy clustering — galaxy power spectrum (Kwan et al. 2015; Zhai et al. 
2018); higher-order statistics 

• Galaxy weak lensing — weak lensing peak counts (Liu et al. 2015); power 
spectrum (Petri et al. 2015); covariance matrices

• 21 cm — 21 cm power spectrum (Jennings et al. 2018)



Dark Energy Spectroscopic Instrument
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1. Neutrino mass hierarchy

There is great interest in determining the distribution of masses between neutrino species [138]. Although cosmology
can, in principle, measure individual neutrino mass eigenstates, this is unrealistic at the level of precision of experiments
discussed here [139–143] and therefore we are e↵ectively limited to determining only the sum of neutrino masses
directly. The situation given experimental constraints is illustrated in Figure 4. In the case where the hierarchy is in
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FIG. 4. Inverted (blue) vs. normal (red) hierarchies, given the current mass-squared di↵erence measurements from [144].
Each line shows the mass of one of the neutrinos, plotted as a function of the sum of masses in each case (in the inverted case
the two most massive neutrinos have almost indistinguishable mass on this plot). The green and gray bands indicate the 1 and
2 sigma error for an experiment with �m⌫ = 0.017eV, assuming no prior on

P
m⌫ , for a fiducial model with

P
m⌫ = 0.057eV.

fact normal with sum of masses near the minimum, i.e., sum of masses ⇠ 57 meV, the fact that the hierarchy is normal
can be proven, because the minimum total mass in the inverted hierarchy is ⇠ 96 meV, however, if the hierarchy is
inverted, or normal but with mass much above the minimum, there will be no possibility of distinguishing the two
cases. We see that in the best case the experiments in Table IX can hope to distinguish the hierarchy at about 3.5�
level.

B. Dark Energy Figures of Merit

Table X shows Dark Energy Task Force (DETF) Figures of Merit (FoMs) [1], except with the DETF definition
modified to include marginalization over neutrino mass (to be clear, the additional parameters beyond our baseline

are w0, w0, and ⌦
k

). For the common normalization convention that we follow, the FoM is simply
�
�
wp�w

0
�
�1

where w(z) = w
p

+ (a
p

� a)w0 and a
p

is chosen to make the errors on w
p

and w0 independent. Overall we find the
complementarity between di↵erent experiments striking – each of the major experiments contributes significantly and
non-redundantly to building up our understanding of dark energy properties.

One additional thing that this Table shows, although it requires comparison with the fixed neutrino mass calculations
in the Appendix, Table XVI, to see it, is that Dark Energy constraints are generally significantly degraded by the
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Motivation II: small scale clustering
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Testing the paradigm of cold dark matter
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a new, general parametrisation for the small-scale power
suppression, which accurately covers all the most viable
(non-thermal) nCDM scenarios, with the goal to provide
a fully general modelling of the small-scale departures
from the standard CDM model. Such parametrisation
represents a direct link between DM model building and
structure formation observations. This can be exploited
to investigate, in a simple way, the astrophysical implica-
tions of di↵erent nCDM scenarios, focusing not only on
the corresponding cut-o↵ scale, but also on the peculiar
features of the power spectra at small scales. Such inves-
tigation is therefore intriguing per se, even regardless of
the CDM small-scale crisis.

In this paper, we present the first accurate astrophys-
ical constraints on the general parametrisation discussed
in Ref. [27], which are easily translatable to bounds on
the fundamental nCDM properties. They have been ob-
tained through a comprehensive analysis of the Lyman-↵
forest [28], namely the absorption lines produced by the
inhomogeneous distribution of the intergalactic neutral
hydrogen along di↵erent line of sights to distant quasars
(QSOs) [29], which is an ideal tracer for the matter power
spectrum at high redshifts (2 . z . 5) and small scales
(0.5 Mpc/h,. � . 20 Mpc/h) [23, 25].

The paper is organised as follows: in Section II
we briefly summarise the novel parametrisation for the
small-scale power suppression; in Section III we describe
the suite of simulations that we have performed; in Sec-
tion IV we present the data set that we have used; in
Section V we discuss the method that we have adopted
for the analysis; in Section VI we discuss the results that
we have obtained and their implications for the funda-
mental nature of DM; finally, in Section VII we draw the
conclusions and outline the future developments of this
work.

II. A NEW, GENERAL PARAMETRISATION

The small-scale suppression of the matter power spec-
trum P (k), due to the existence of nCDM, is usually
described by the transfer function T (k), which is defined
as follows:

T 2(k) =


P (k)

nCDM

P (k)
CDM

�
, (1)

i.e. as the square root of the ratio of the linear power
spectrum in the presence of nCDM with respect to that
in the presence of CDM only, for fixed cosmological pa-
rameters. For the particular case of thermal WDM, the
transfer function is well approximated by the analytical
fitting function [30]

T (k) = [1 + (↵k)2µ]�5/µ, (2)

where ↵ is the only free parameter and µ = 1.12. There-
fore, bounds on the mass of the thermal WDM candidate
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FIG. 1. Here we plot the squared transfer functions associated
to the 109 {↵,�, �}-combinations that we used for our anal-
ysis (grey solid lines), each of them corresponding to a di↵er-
ent nCDM model (see also Table II). We also plot the squared
transfer functions corresponding to three thermal WDMmod-
els with masses 2, 3 and 4 keV (blue, green and red dashed
lines, respectively).

are easily converted into constraints on ↵, through the
following formula [18]:

↵ = 0.24

✓
m

x

/T
x

1 keV/T
⌫

◆�0.83

✓
!
x

0.25(0.7)2

◆�0.16

Mpc

= 0.049
⇣ m

x

1 keV

⌘�1.11

✓
⌦

x

0.25

◆
0.11

✓
h

0.7

◆
1.22

h�1Mpc ,

(3)
with m

i

being the mass, T
i

the temperature, ⌦
i

the abun-
dance of the i-th species and !

i

⌘ ⌦
i

h2. The index
i = x, ⌫ stands for WDM and active neutrinos, respec-
tively.

Let us now introduce the half-mode scale, k
1/2

, as the
wave-number for which T 2 ⌘ 0.5, and define the following
generalisation of Eq. (2), which has been introduced and
thoroughly discussed in Refs. [27, 31]:

T (k) = [1 + (↵k)� ]� , (4)

so that k
1/2

is a function of the three parameters ↵, �
and �, i.e.

k
1/2

= ((0.5)1/2� � 1)1/�)↵�1. (5)

Via Eqs. (2) and (3) we have a one-to-one correspon-
dence between m

x

and ↵. On the other hand, through
Eqs. (4) and (5), bounds on the DM mass are mapped to
3D surfaces in the {↵,�, �}-space. In other words, given
a value of k

1/2

which corresponds to a certain thermal
WDM mass, Eq. (5) allows to compute the correspond-
ing surface in a 3D parameter space.

It is well established that thermal warm DM candi-
dates with masses of the order of 3 keV can induce a sup-
pression in the corresponding matter power spectra such

Murgia et al. (2018)
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Figure 6. DM density projections of the zoom MW-like halo simulations for four different DM models. The suppression of substructure, relative to the CDM
model, is evident for the ETHOS models ETHOS-1 to ETHOS-3, which have a primordial power spectrum suppressed at small scales. The projection has a
side length and depth of 500 kpc.

times, where the density is high enough to cause at least some par-
ticle collisions during a Hubble time. We can try to quantify this
already at the resolution level that our parent simulation allows. To
do this, we measure the central or core density for all resolved main
haloes in the uniform box simulations, similar to the analysis pre-
sented in Buckley et al. (2014). The mass resolution of our uniform
box is slightly better than that of Buckley et al. (2014), and we
probe at the same time a volume which is about 3.8 times larger.
We can therefore sample a larger range of halo masses and with bet-
ter statistics. We define the central (core) density within three times
the softening length (8.7 kpc). The upper panel of Fig. 4 shows
the actual core density, while the lower panel shows the ratio with
respect to the CDM case. We take the median value of the distri-

bution within each mass bin. The plot shows the familiar scale of
density with mass at a fixed radius, with core densities that vary
from ⇠ 10

6 h2
M�kpc

�3 for halo masses around ⇠ 10

10 h�1
M�

to ⇠ 10

8 h2
M�kpc

�3 for halo masses around ⇠ 10

14 h�1
M�.

Models ETHOS-1 (red) and ETHOS-2 (blue) have a significantly
reduced core density compared to the CDM case for low mass
haloes. We note that the effect is strongest in the former than in
the latter, which points to the primordial power spectrum suppres-
sion as the main culprit since the cross section is lower for model
ETHOS-1 than for model ETHOS-2. Low-mass haloes in ETHOS-
1 are therefore less dense than in CDM, mainly because they form
later (analogous to the WDM case). Interestingly, ETHOS-3 shows
a different behaviour. Here the core density is most reduced for

MNRAS 000, 1–18 (2015)
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Figure 1. Properties of the effective DM models relevant for structure formation. Left: Linear initial matter power spectra (�linear(k)2 = k3Plinear(k)/2⇡2)
for the different models (CDM and ETHOS models ETHOS-1 to ETHOS-4) as a function of comoving wavenumber k. The ETHOS models differ in the
strength of the damping and the dark acoustic oscillations at small scales. As a reference, we also include thermal-relic-WDM models, which are close to each
model in ETHOS. Right: Velocity dependence of the transfer cross-section per units mass (�T /m) for the different ETHOS models. Models ETHOS-1 to
ETHOS-3 have �T /m / v�4

rel for large relative velocities. For low velocities the cross sections can be as high as 100 cm2 g�1.

uniform box and zoom-in simulations. The results of these simula-
tions are then presented in Section 4, where we first focus on gen-
eral results based on the uniform box simulations before discussing
the structure of the galactic halo within the different models. In this
section we will also try to construct a model which solves some of
the outstanding small-scale problems of the MW satellites. Finally,
we present our summary and conclusions in Section 5.

2 EFFECTIVE MODELS

The different DM models that we investigate in this paper are sum-
marised in Table 1. For all simulations we use the following cos-
mological parameters: ⌦m = 0.302, ⌦⇤ = 0.698, ⌦b = 0.046,
h = 0.69, �8 = 0.839 and ns = 0.967, which are consistent
with recent Planck data (Planck Collaboration et al. 2014; Spergel
et al. 2015). We study mainly five different DM models, which we
label CDM and ETHOS-1 to ETHOS-4. In the parameter space of
ETHOS, these models are represented by a specific transfer func-
tion (see left panel of Fig. 1 for the resulting linear dimensionless
power spectra), and a specific velocity-dependent transfer cross-
section for DM (see right panel of Fig. 1). Our discussion will
mostly focus on ETHOS-1 to ETHOS-3, which demonstrate the ba-
sic features of our ETHOS models. ETHOS-4 is a tuned model that
was specifically set up to address the small-scale issues of CDM
(the MS problem and the TBTF problem). We discuss this model
towards the end of the paper.

These models arise within the effective framework of ETHOS,
described in detail in Cyr-Racine et al. (2015), which we summarise
in the following. ETHOS provides a mapping between the intrin-
sic parameters (couplings, masses, etc.) defining a given DM parti-
cle physics model, and (i) the effective parameters controlling the
shape of the linear matter power spectrum, and (ii) the effective

DM transfer cross section (h�T i/m�); both at the relevant scales
for structure formation. Schematically:
n

m�, {gi}, {hi}, ⇠
o

!
n

!DR, {an,↵l}, {bn,�l}, {dn,m�, ⇠}
o

! Plin,matter(k)

n

m�, {hi}, {gi}
o

!
(

h�T i30
m�

,
h�T i220
m�

,
h�T i1000

m�

)

, (1)

where the parameters on the left are the intrinsic parameters of the
DM model: m� is the mass of the DM particle, {gi} represents the
set of coupling constants, {hi} is a set of other internal parame-
ters such as mediator mass and number of degrees of freedom, and
⇠ = (TDR/TCMB)|z=0 is the present day DR to CMB temperature
ratio.

The effective parameters of the framework are on the right
of Eq. 1, which in all generality include the cosmological density
of DR !DR ⌘ ⌦DRh

2, the set {an,↵l} characterising the DM-
DR interaction, the {bn,�l} set characterising the presence of DR
self-interaction (relevant, for instance, to non-abelian DR), and the
parameter set {dn,m�, ⇠} determining the evolution of the DM
temperature and adiabatic sound speed. This latter quantity is very
small for non-relativistic DM, and it has thus little impact on the
evolution of linear DM perturbations (except on very small scales,
irrelevant for galaxy formation/evolution). In this work, we focus
our attention on the effect of DM-DR interaction on the evolution
of DM perturbations. The physics of these effects are captured by
the parameters {an,↵l}, where the set of l�dependent coefficients
↵l encompasses information about the angular dependence of the
DM-DR scattering cross section, whereas the an are the coeffi-
cients of the power-law expansion in temperature (redshift) of the
DM drag opacity caused by the DM-DR interaction (see Section
II E of Cyr-Racine et al. 2015). Physically, a single non-vanishing
an implies that the squared matrix element for the DM-DR scat-

MNRAS 000, 1–18 (2015)
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Summary

• Lyman-alpha forest constrains extensions to cosmology and particle physics

• Need to robustly marginalise over uncertainty in astrophysics of hydrogen gas 

• Search for deviation from CDM using full shape of power spectrum
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