Fundamental physics from the Lyman-alpha forest

Keir K. Rogers

OKC Fellow, Oskar Klein Centre for Cosmoparticle Physics, Stockholm University

Beyond the Standard Models of...

- Lyman-alpha forest probes early Universe from small to large scales
- Need to disentangle cosmology and astrophysics of intergalactic medium
- High-density hydrogen absorbers & patchy reionisation
- Need "emulator" for statistical inference with cosmological simulations

The Lyman-alpha forest

Lyman-alpha forest surveys

Andreu Font-Ribera

The Lyman-alpha forest traces linear-order matter fluctuations at high redshift from large to small scales

Lyman-α for unique windo small scale

- Combined w allows us t
- dark matte
- neutrino m
- shape of pi

Massive neutrinos

Park et al. (2012); Palanque-Delabrouille et al. (2015)

Primordial power spectrum from the Lyman-alpha forest

Rogers et al. (2018)

Ultra-light axion (fuzzy) dark matter [FDM] + warm dark matter [WDM] / interacting dark matter

Armengaud et al. (2017); Zhang et al. (2017); Baur et al. (2016); Rogers et al. (in prep.)

Dense hydrogen absorbers

Stockholm University

centre

K. Rogers et al., 2018, MNRAS, 474, 3032 K. Rogers et al., 2018, MNRAS, 476, 3716

High column density hydrogen absorbers are leading "foreground" to the Lyman-alpha forest

Illustris cosmological hydrodynamical simulations

Densest systems are identified and masked but there always remains a residual contamination

Scale-dependent bias of residual contamination is very different to previous models of total contamination

Patchy reionisation

The observed scatter in Lyman-alpha opacities at z > 5cannot be explained by density fluctuations alone

Eilers et al. (2018)

There is un-extracted information in the full distribution of transmission spikes

Density-estimation likelihood-free inference

Alsing et al. (2019); Rogers & Alsing (in prep.)

Information-maximising neural networks

Charnock et al. (2018); Rogers & Alsing (in prep.)

Emulating the intergalactic medium

Stockholm University

centre

arxiv: 1812.04631, 1812.04654

K. Rogers, H. Peiris, et al., 2019, JCAP, 02, 031 S. Bird, K. Rogers, et al., 2019, JCAP, 02, 050

Gaussian process model allows probabilistic interpolation of cosmological simulations

PPD: $p(f(\mathbf{x}^*)|f(\mathbf{x}), \mathbf{x}, \mathbf{x}^*) \sim \mathcal{N}(K_*K^{-1}f(\mathbf{x}), K_{**} - K_*K^{-1}K_*^{\mathrm{T}})$

We need an emulator

Quadratic polynomial interpolation

Latin hypercube Gaussian process emulator

Lyman-alpha forest flux power spectrum

Lyman-alpha forest flux power spectrum

Smaller emulator error propagates to better parameter constraints

Quadratic polynomial interpolation

Latin hypercube Gaussian process emulator

Can we actively construct the training set?

Bayesian optimisation

We need a balance between

VS

Exploitation

where interpolation error is large where posterior probability is large

Can also optimise emulator in "batches"

Batch Bayesian optimisation

- Many simulations too costly to run in serial
- Must choose **batch of simulations simultaneously** from acquisition function
- Can update uncertainty as Gaussian process variance independent of output

But is Bayesian optimisation more efficient than the "brute force" approach? Large Latin hypercube (30 simulations) Bayesian optimisation (26 simulations) + Initial Latin hypercube

- + Extra Latin hypercube simulations
- + Optimisation simulations

Other emulators of the cosmic large-scale structure

- Dark matter & halo statistics small-scale non-linear matter power spectrum (Heitmann et al. 2009); halo mass function (McClintock et al. 2018)
- Galaxy clustering galaxy power spectrum (Kwan et al. 2015; Zhai et al. 2018); higher-order statistics
- Galaxy weak lensing weak lensing peak counts (*Liu et al. 2015*); power spectrum (*Petri et al. 2015*); covariance matrices
- 21 cm 21 cm power spectrum (Jennings et al. 2018)

Dark Energy Spectroscopic Instrument

DESI is the next big step in mapping the Universe

>15X more powerful than SDSS-III/BOSS

5000 robotic positioners on a 4-m telescope

Focal plane

Beyond the Standard Model(s) with DESI

$P_{ m primordial}(k)$	\propto	$(k/k_0$	$()^{n_s+}$	$\frac{1}{2}\alpha_s$	$\ln(k/k_0)$
------------------------	-----------	----------	-------------	-----------------------	--------------

Data	$\sigma_{n_{\rm s}}$	σ_{α_s}
Gal $(k_{\rm max} = 0.1 \ {\rm h^{-1}Mpc})$	0.0024(1.6)	0.0051(1.1)
Gal $(k_{\rm max} = 0.2 \ {\rm h}^{-1}{\rm Mpc})$	0.0022(1.7)	0.0040(1.3)
Ly- α forest	0.0029(1.3)	0.0027(2.0)
Ly- α forest + Gal ($k_{\text{max}} = 0.2$)	0.0019(2.0)	0.0020(2.7)

PI: Font-Ribera Co-I: Rogers, Kitching, McDonald, Pedersen, Peiris, Pontzen, Slosar

Testing the paradigm of cold dark matter

Testing the paradigm of cold dark matter

The Lyman-alpha forest constrains dark matter model space by scale and shape of power spectrum suppression

$$m_{\rm ULA} \ge 10^{-21} \,\mathrm{eV}$$

Dark acoustic oscillations

Vogelsberger et al. (2016)

Summary

- Lyman-alpha forest constrains extensions to cosmology and particle physics
- Need to robustly marginalise over uncertainty in astrophysics of hydrogen gas
 Regshift Surveys
- Search for deviation from CDM using full shape of power spectrum

