

SDSS-III Baryon Oscillation Spectroscopic Survey DR9 Results: Baryon Acoustic Oscillations, the growth of structure, and the Alcock-Paczynski effect at z=0.57

Beth Reid
Hubble Fellow
Lawrence Berkeley National Lab

in collaboration with Martin White, Will Percival, Lado Samushia, BOSS galaxy clustering + pipeline working groups

arXiv:1203.6499

arXiv:1203.6594

BOSS DR9 CMASS papers

- Ross et al.: Systematics
- Manera et al.: Mock catalogs
 arXiv:1203.6609
- Anderson et al.: BAO
- Sanchez et al.: fits to monopole $\xi(s)$ arXiv:1203.6616
- Reid et al.: fits to anisotropic clustering arXiv:1203.6641
- Tojeiro: RSD with passive galaxies arXiv:1203.6565

Beth Reid

Outline

- Non-cosmologist guide to galaxy redshift surveys
- Galaxy clustering in 2d: $\xi(r_{\sigma}, r_{\pi})$
- Information in the spherical avg: $\xi_0(s)$
 - Information from anisotropy: $\xi_2(s)$
- Cosmological Implications

SDSS The universe in perspective

Large scale structure initial conditions

CMB z = |09| comoving angular diameter distance:

$$(1+z)D_A(z) =_0 \int^z c dz'/H(z')$$

Sound horizon scale = BAO standard ruler

Beth Reid

CMB precisely predicts full P(k), not just BAO feature

photon-baryon fluid

dark matter dominated

Hlozek et al., 2012 ApJ, 749, 90

Mpc⁻¹

Mpc

Beth Reid

CMB provides template P(k) / ξ(r)

• depends on $\Omega_m h^2$, $\Omega_b h^2$, n_s , NOT $D_A(z_{CMB})$

Beth Reid

SDSS The universe in perspective

Large scale structure initial conditions

CMB z = |09| comoving angular diameter distance:

$$(1+z)D_A(z) =_0 \int^z c dz'/H(z')$$

Sound horizon scale = BAO standard ruler

Beth Reid

Geometric constraints from galaxy surveys

 We measure θ, φ, and z for each galaxy, and use a cosmological model to convert to comoving coordinates

comoving angular diameter distance = $(1+z) D_A(z)$

Beth Reid

Alcock-Paczynski effect

• Even without a standard ruler, comparing clustering along and perpendicular to the LOS allows us to measure $D_A * H$

comoving angular diameter distance = $(I+z) D_A(z)$

Beth Reid

What contributes to H(z)?

$$H^{2}(a) = H_{0}^{2} X$$

$$[\Omega_{r}a^{-4} + \Omega_{m}a^{-3} + \Omega_{k}a^{-2} + \Omega_{DE} \exp\{3 \int_{a}^{1} da' [1+w(a')]/a'\} + ...]$$

photons relativistic species

Dark Energy

baryons
dark matter
neutrinos today (T = 2 K!)

Beth Reid

Redshift Space Distortions (RSD)

real to redshift space separations: $\chi(z) = \chi_{true} + v_p/aH$

isotropic

squashed along line of sight

$$f = d \ln \sigma_8 / d \ln a \approx \Omega_m^{\gamma}$$

Beth Reid

Dark Energy or modified gravity?

- Our strongest evidence for DE is from geometric measures: SNIa, BAO, H₀ + distance to CMB, AP, ... [probes homogeneous universe]
- We can distinguish modified gravity from exotic fluid in GR as the reason for cosmic acceleration by the growth of inhomogeneities

growth in GR:
$$\frac{d^2G}{d\ln a^2} + \left(2 + \frac{d\ln H}{d\ln a}\right) \frac{dG}{d\ln a} = \frac{3}{2}\Omega_{\rm m}(a)G$$

Beth Reid

Outline

- Non-cosmologist guide to galaxy redshift surveys
- Galaxy clustering in 2d: $\xi(r_{\sigma}, r_{\pi})$
- Information in the spherical avg: $\xi_0(s)$
 - Information from anisotropy: $\xi_2(s)$
- Cosmological Implications

Sky Coverage of DR9: 3275 deg²

New BOSS Imaging

Beth Reid

The BOSS CMASS sample

- target selection color cuts designed for "constant stellar mass" sample
- $b \approx 2, \approx 10\%$ satellite fraction
- DR9 $V_{eff} = 2.2 \text{ Gpc}^3$
- $0.43 < z < 0.7; z_{eff} = 0.57$

White et al., 2011, arXiv:1010.4915

LBL RPM May 31 2012

Beth Reid

Our Mission: Extract as much information as possible from $\xi(r_{\sigma}, r_{\pi})$

Beth Reid

Legendre Polynomial moments: $\xi_{\ell}(s)$

$$\xi(s,\mu_s) = \sum_{\ell} \xi_{\ell}(s) L_{\ell}(\mu_s)$$

 $L_0 =$

 $L_2 = (3\mu^2 - 1)/2$

$$\mu = r_{\pi}/(r_{\pi}^2 + r_{\sigma}^2)^{1/2}$$

Beth Reid

Fitting $\xi_{\ell}(s)$

• With strong CMB shape prior, we're just fitting two amplitudes $[\xi_{0,2}(s)]$ and a rescaling of the s axis:

$$D_V \equiv \left[cz(1+z)^2 D_A^2 H^{-1} \right]^{1/3}$$

$$D_V/r_s = \alpha \left(D_V/r_s\right)_{\rm fid}$$

LBL RPM May 31 2012

Beth Reid

Outline

- Non-cosmologist guide to galaxy redshift surveys
- Galaxy clustering in 2d: $\xi(r_{\sigma}, r_{\pi})$
- Information in the spherical avg: $\xi_0(s)$
 - Information from anisotropy: $\xi_2(s)$
- Cosmological Implications

Anderson et al. recap: fits to α for "reconstructed" $\xi(s)$ and P(k)

Reid et al.: $\alpha = 1.023 \pm 0.019$

Beth Reid

BOSS week round-up: comparison of methodology

Anderson et al.

- ξ_0 or P_0
- isolate BAO information/ marginalize broadband terms
- Use phase information in the observed density field to sharpen the BAO using "reconstruction"

Reid et al.

- ξ_0, ξ_2
- fit full model describing galaxy bias/nonlinear RSD
- not currently feasible postreconstruction

Outline

- Non-cosmologist guide to galaxy redshift surveys
- Galaxy clustering in 2d: $\xi(r_{\sigma}, r_{\pi})$
- Information in the spherical avg: $\xi_0(s)$
 - Information from anisotropy: $\xi_2(s)$
- Cosmological Implications

Alcock-Paczynski Effect

 $\xi(r_p, \pi)$ appears anisotropic if you assume the wrong cosmology; constrains $F(z) \equiv (1+z) D_A(z) H(z)/c$

Beth Reid

Geometric distortions can be modeled exactly*

$$\xi^{
m fid}(r_{\sigma}, r_{\pi}) = \xi^{
m true}(\alpha_{\perp} r_{\sigma}, \alpha_{\parallel} r_{\pi}),$$

$$\alpha_{\perp} = \frac{D_A^{
m fid}(z_{
m eff})}{D_A^{
m true}(z_{
m eff})}, \qquad \alpha_{\parallel} = \frac{H^{
m true}(z_{
m eff})}{H^{
m fid}(z_{
m eff})},$$

Beth Reid

Modeling the full shape of $\xi_{0,2}$ (Reid & White 2011)

• $b\sigma_8$, $f\sigma_8$ determine amplitude of $\xi_{0,2}$

σ₈: amplitude of matter fluctuations

b: unknown conversion factor between galaxy and matter fluctuations

 $f = d \ln \sigma_8/d \ln a;$ conversion factor between matter and velocity fluctuations

Beth Reid

Theoretical foundation: The Halo Model

- Gas accumulates in gravitationally-bound dark matter halos, forms galaxies
- Dark-matter only Nbody simulations of gravitational evolution used to calibrate/test galaxy clustering models
- "Fingers-of-God" are virial motions within halos

Beth Reid

Brief model description

- 2LPT (Matsubara et al. 2008) s > 100 Mpc
 - s < 100 Mpc: Gaussian streaming approximation

$$1 + \xi_{g}^{s}(r_{\sigma}, r_{\pi}) = \int \left[1 + \xi_{g}^{r}(r)\right] e^{-[r_{\pi} - y - \mu v_{12}(r)]^{2}/2\sigma_{12}^{2}(r, \mu)} \frac{dy}{\sqrt{2\pi\sigma_{12}^{2}(r, \mu)}}$$

$$2LPT$$

$$2SPT$$

$$2nd \ order \ bias \ included$$

$$|st \ order \ bias \ only \ included$$

• FOGs included with additive isotropic σ^2_{FOG}

Beth Reid

Effect of intrahalo satellite velocities (aka "Fingers of God")

Battle plan: marginalize over nuisance parameter σ^2_{FOG} with hard prior informed by small-scale galaxy clustering

Beth Reid

Alcock-Paczynski has different scaledependence, distinguishable from RSD

Beth Reid

Dy stretches s axis

Final ingredient: Covariance matrix

- 600 (L)PT halos mocks described in Manera et al.
- Neighboring points in ξ highly correlated -- no χ^2 by eye!

Results: Fitting to 2d clustering

- Use full model of $\xi_{0,2}$ (s $\geq 25 \, h^{-1}$ Mpc) to constrain:
 - $D_V = [(I+z)^2 D_A^2 cz/H]^{1/3}$
 - growth of structure $(f\sigma_8)$
 - Alcock-Paczynski $F(z) \equiv (1+z) D_A(z) H(z)/c$
 - marginalizing over shape of underlying linear P(k), $b\sigma_8$, σ^2_{FOG}

Best fit model: $\chi^2 = 39$ (41 DOF)

- growth: $f\sigma_8 = 0.437$
- geometry: $D_A = 2184 \text{ Mpc}$, $H = 91.5 \text{ km s}^{-1} \text{ Mpc}^{-1}$
- nuisance: $b\sigma_8 = 1.235$, $\sigma^2_{FOG} = 40 \text{ Mpc}^2$
- shape: $\Omega_{\rm m}h^2 = 0.1364$, $\Omega_{\rm b}h^2 = 0.02271$, $n_{\rm s} = 0.967$

LBL RPM May 31 2012

Beth Reid

Outline

- Non-cosmologist guide to galaxy redshift surveys
- Galaxy clustering in 2d: $\xi(r_{\sigma}, r_{\pi})$
- Information in the spherical avg: $\xi_0(s)$
 - Information from anisotropy: $\xi_2(s)$
- Cosmological Implications

BAO Hubble Diagram: Comparison with, CMB, H₀, and SN

+ $I \sigma in \Omega_m h^2$

Beth Reid

ξ_0 BAO + ξ_2 : D_A, H, f σ_8 at z=0.57

- $f\sigma_8(0.57) = 0.43 \pm 0.069$
- $H(0.57) = 92.4 \pm 4.5 \text{ km s}^{-1} \text{ Mpc}^{-1}$
- $D_A(0.57) = 2190 \pm 61 \text{ Mpc}$

WMAP \CDM prediction

- $f\sigma_8(0.57) = 0.451 \pm 0.025$
- $H(0.57) = 94.2 \pm 1.4 \text{ km s}^{-1} \text{ Mpc}^{-1}$
- $D_A(0.57) = 2113 \pm 53 \text{ Mpc}$

LBL RPM May 31 2012

Beth Reid

Breaking the degeneracy between for and F

Compute eigenvectors in F-f σ_8 plane, project back onto $\xi_{0,2}$; minimize χ^2 wrt D_V , $b\sigma_8$, σ^2_{FOG}

Beth Reid

Cosmological implications: flat wdcm (Samushia, BR et al., in prep)

- Anisotropic clustering allows huge improvement on w!
- $w = -0.95 \pm 0.25$ (WMAP + $D_V(0.57)/r_s$)
- w = -0.88 ± 0.055
 (WMAP + anisotropic)
 Same precision as WMAP
 +SN!

Beth Reid

Cosmological implications: flat wdcm (Samushia, BR et al., in prep)

- Anisotropic clustering allows huge improvement on w!
- Thanks to fortuitous degeneracy direction between F_{AP} and fσ₈

Cosmological implications: flat wdcm (Samushia, BR et al., in prep)

• Both SN, H_0 push back towards w = -1

Beth Reid

Dark Energy or modified gravity?

- CMASS geometric constraints tighten
 ΛCDM fσ₈ prediction, shift it up
- CMASS $f\sigma_8$ is low by $\sim 1.5\sigma$
- Same story -- other measurements pull towards GR

Samushia, BR, et al., prep

Summary

- 1.7% BAO distance constraint at z=0.57
- (First?) Best measurement of H(z) using BAO + Alcock-Paczynski effect
- 7% growth rate measurement, I.5σ low compared to ΛCDM+GR
- WMAP+BOSS constraining power on dark energy substantially improved (~factor of 4 in flat wcdm!) when including anisotropic clustering