Revealing CII Emission with LSS Cross-correlations

Anthony Pullen Center for Cosmology and Particle Physics New York University

Collaborators Paolo Serra, Tzu-Ching Chang, Olivier Doré, Shirley Ho

Research Progress Meeting Lawrence Berkeley National Lab October 19, 2017

Image Credit: Planck Collaboration

Pre-print arXiv:1707.06172

Outline

- CII Basics
- Why intensity mapping?
- Method for estimating CII intensity
- Cross-power spectra
- CII intensity what did we learn?
- Forecasts for future surveys
- Next Steps

The CII Line

- CII fine structure line of ionized carbon
- Emission due to CII ion spin transitions due to collisional excitations in PDRs
- Traces star-forming galaxies
- Typically **brightest line** in SF galaxies (0.1-1% of total FIR)

Gong et al. 2012, Silva et al. 2015, Yue et al. 2015

Credit: Patrick Breysse

How do we probe the numerous faint galaxies?

- Measures aggregate intensity in large pixels (like a CMB probe)
- Accepts low angular resolution for high sampling
- Better redshift precision than continuum surveys
- High redshifts (z > 6) & fast scans allow large volumes to access many modes for LSS

Image Credit: Li et al. 2015

Missing Cosmic History

Current Galaxy Surveys

Lack of observational probes (Intensity Mapping Potential)

Credit: NASA/WMAP

IM probes the largest volumes

- Probes the largest scales with many modes
- Ideal for non-gaussianity, GR tests, modified gravity

Reionization

Credit: Robertson et al. 2010

- 21-cm emission ideal for probing IGM at high redshifts
- Direct τ measurement: break CMB degeneracies (A_s , Σm_v)
- 21 cm x galactic lines enhance reionization probes

Barkana & Loeb 2001, Gunn & Peterson 1965, Liu et al. 2016

Galactic emission lines

- CO, CII, Lya, Ha, etc.
- Better foregrounds than 21 cm emission F/I=10²
- Single-dish no foreground wedge
- Line confusion is an issue
- Use cross-correlations to reduce foreground biases

Righi et al. 2008, Gong et al. 2011, Lidz et al. 2011, **Pullen** et al. 2013, Breysee et al. 2014

What are the intensities?

We don't know

Model A Model A Model B Model A Model B Model B Model B Model B Model A Model B Model A Model A Model A Model B Model B Model A Model A Model A Model A Model A Model A Model B Model A Model B Model A Model B Model A Model B Model A Model A Model A Model A Model B Model A Model B Model A Model A Model A Model A Model A Model A Model B Model A Model B Model A Model B Model A Model A Model A Model A Model A Model A Model B Model A Model B Model A Model A Model A Model B Model B Model B Model B Model A Model B Model B Model B Model B Model A Model B Mod

D

10¹

-2

-3

Measure line intensities at moderate redshifts (z < 3)

- Cross-correlate moderate redshift IM with galaxy surveys
- Constrain star formation rate from more abundant, lowmass halos
- Predict spectral foregrounds for high-redshift surveys
- Plan for future large-volume and/or high-redshift surveys

CC measurements

CO Measurements

Luminosity-Halo Mass Ratio

AcII sets the CII intensity

Collisional excitation models predict higher intensities than LF models

AP, Serra, Chang, Doré, Ho (2017)

Dust and CIB Dominate Signal

Cosmic Infrared Background

- Emitted by dusty (young) stars
- Tracer of large-scale structure
- Must be removed to reveal CII signal

Credit: AP, Chang, Doré, Ho, Serra (2017)

Image Credit: Planck Collaboration

CII-Tracer Cross-Power

etc.

- No noise bias 🗸
- Foregrounds cancel
- Additional cross-correlation coefficient

We measure CII emission using cross-correlations

- Probe CII at z = 2.5 in Planck 545 GHz map.
- CII cross-correlates with BOSS quasars (z = 2-3.2).
- Cross-correlation avoids dust contamination in signal.
- CIB model highly uncertain Fit jointly for CIB & CII emission.
- Use 353, 857 GHz Planck bands and cross-correlations with SDSS-CMASS galaxies to break CIB/CII degeneracies.

How we estimate cross-correlations

- C_{ℓ}^{TQ} and C_{ℓ}^{TG} is measured in 9 *l*-bins
- Mode-coupling is included in pseudo-*C*_l estimate and covariances
- Use Planck maps over 33% of sky to constrain CIB and CII
- Use BOSS Core Quasar Sample and CMASS LRGs to constrain CIB and CII

Credit: AP, Serra, Chang, Doré, Ho (2017)

Planck - 353, 545, 857 GHz

Cross-Correlations fit CIB/CII model

- Measurement fits well to a CIB halo model both with and without CII emission
- Consistent with measurement using 20% Galactic Plane mask
- Jackknives are well within statistical errors
- Excess on small scales for LRGs do not affect result

Credit: AP, Serra, Chang, Doré, Ho (2017)

MCMC for CIB/CII model

$$C_{\ell}^{T_{i}-LSS} = C_{\ell}^{CIB_{i}-LSS} + C_{\ell}^{CII_{545}-Q} \delta_{i,545} \delta_{LSS,Q}$$
CIB-LSS
cross-correlation
measurements
CII-Quasar
cross-correlation
CII-Quas

Hint of CII emission

- We fit the CIB parameters and the CII amplitude
- CIB constraints consistent with previous measurements from Planck auto-correlation analysis
- Implies CIB & QSOs/LRGs are perfectly correlated
- CII intensity disfavors null hypothesis at 95% confidence
- AP, Serra, Chang, Doré, Ho (2017)

$$T_d = 27.4 \pm 0.8 \text{K}$$

$$\delta = 2.3 \pm 0.1$$

$$I_{[CII]} = 5.7^{+4.8}_{-4.2} \cdot 10^4 \text{ Jy/sr}$$
(95% c.l.)

What about other lines?

- Broad-band Planck maps should contain other lines that correlate with QSOs and LRGs
- QSOs OI, OIII; LRGs NII
- We compute C_{ℓ} contributions from these lines using our CII measurement and measured line ratios
- We find a biases for CIB and CII < 3%.

C_ℓ	Interlopers	$\Delta C_{\ell}/C_{\ell}$ [%]
353-QSO	12 CO(10-9), 12 CO(11-10),	0.55
	$^{12}CO(12-11)$	
545-QSO	OI	0.28
857-050	OIII	11
353-CMASS	12 CO(5-4), 13 CO(5-4),HCN(6-5)	2.3
545-CMASS	$^{12}CO(7-6), ^{12}CO(8-7), CI,$ $^{13}CO(7-6), ^{13}CO(8-7)$	1.2
857_CMASS	12CO(11-10) 12 CO(12-11) NII	0.44
C II-QSO	all interlopers	2.5

Credit: AP, Serra, Chang, Doré, Ho (2017)

Visbal & Loeb 2011

Did We Overfit?

- We need to make sure our CII excess we see is not due to overfitting the data by including more parameters
- Bayesian evidence ratio compares the fits from the CII and no-CII models
- Accounts for the no-CII model having 1 less parameter
- The ratio is less than 3, meaning no measurable preference between the models
- More precise measurements can confirm or reject CII hypothesis

CII Model Constraints

- Assuming CII excess is real
- Given as a function of the minimum halo mass for CII emission
- Favors collisional excitation models
- Disfavors LF models, but not ruled out

Credit: AP, Serra, Chang, Doré, Ho (2017)

Next Steps

Removing CII Foregrounds

- Foregrounds uncorrelated with quasars still appear in errors, including thermal dust emission
- We can improving analysis by constructing a template for all foregrounds from a linear combination of Planck bands
- Goal: remove all foregrounds that correlated across bands
- Team: Eric Switzer, Shengqi Yang (NYU grad student)

Prospects with DESI

- Replacing BOSS with DESI LRGs & quasars could increase the CII precision 5x!
- PIXIE intensity maps x DESI LRGs & quasars should decrease CII uncertainty 10x.
- If confirmed, extrapolated reionization signal could be seen by TIME-Pilot (SNR ~ 7)

Mayall 4m telescope will be used for DESI (Credit: NOAO, AURA, NSF)

Kogut et al. 2011, Hill et al. 2016, Levi et al. 2013, Crites et al. 2014

21 cm CCs to probe cosmology

1.4

- 21 cm x gal CCs could constrain growth rate while avoiding foreground bias
- IM CCs could make high-*z* growth rate, NG measurements
- Forecasts for half-sky Hα survey with CDIM-detector competitive at low-redshifts
- Next step: high-z forecasts, NG constraints

$\delta(f\sigma_8)/(f\sigma_8)$ $\delta D_{\rm A}/D_{\rm A}$ $\delta H/H$ Z, UHF band 0.6 0.7 0.04 0.03 0.02 0.03 0.02 0.8 0.05 0.05 0.03 0.9 0.03 0.04 0.03 0.06 1.0 0.04 1.1 0.07 0.03 1.2 0.08 0.05 0.03 1.3 0.10 0.06 0.03

0.11

Credit: Pourtsidou et al. 2016

0.06

0.04

SKA1 x Stage IV galaxy survey

CDIM - Cosmic Dawn Intensity Mapper - Cooray et al. 2016

Multi-line IM simulations

- More surveys more sims
- Problem: Lack of IM simulations over large volumes with realistic small-scale physics
- Seeking to construct large-volume sims to be used by IM surveys for astrophysics and cosmology studies
- Team: Rachel Sommerville, Marcelo Alvarez, Eli Visbal

Credit: Lidz et al. 2009

- We search for CII emission in high-frequency Planck maps using LSS cross-correlations, jointly fitting for CIB
- We find a hint of a CII signal at z = 2.5 using crosscorrelations of Planck maps with LSS
- Measurement favors collisional excitation models, but better data needed
- Cross-correlations with DESI LRGs & QSOs have a great chance at confirming this CII signal.
- Next: Foreground Removal, HI CCs, IM Simulations