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NERSC: the Mission HPC Facility for DOE 
Office of Science Research

Bio	Energy,		Environment Computing

Particle	Physics,	Astrophysics

Largest funder of physical 
science research in the U.S. 

Nuclear	Physics

6,000 users, 700 projects, 700 codes, 48 states, 40 countries, universities & national labs

Materials,	Chemistry,	Geophysics

Fusion	Energy,	Plasma	Physics



NERSC has a long history of working with 
experimental and observational science projects



What’s different?

• Proliferation	of	data	from	DOE	user	facilities

• Scientific	workflows	have	become	more	
complex
– Streaming	data	to	HPC	facilities
– Real-time/Interactive	access
– Rich	‘Data’	stack	

• Important	scientific	problems	are	requiring	both	
simulation	and	data	analytics
– Advanced	Machine	Learning	and	Statistics	methods	+	

tools	required



DOE Exascale Requirements Reviews

• Broad input from DOE 
experimental facilities

• Focused on the exascale
‘ecosystem’, beyond compute

• Machine Learning called out 
as an important cross-cut 
theme
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NERSC Platforms
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NERSC Big Data Stack
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Capabilities Technologies

Data	Transfer	+	Access

Workflows

Data	Management

Data	Analytics

Data	Visualization



Data Analytics Methods

AI

Machine Learning

Deep 
Learning

Graph 
Analytics

Statistics

Image/Signal 
Processing

Linear 
Algebra
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Computer Vision
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ImageNet Performance
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Speech Recognition



Self-Driving Cars



Alpha Go



Can Deep Learning work for Science?

Similarities

Tasks

• Pattern	Classification
• Regression
• Clustering
• Feature	Learning

Differences

Unique	attributes	of	Scientific	
Data

• Multi-channel	/	Multi-variate
• Double	precision	floating	

point
• Noise	and	Artefacts
• Statistics	are	likely	different	
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Characterizing Extreme Weather in a 
Changing Climate

1



Climate Science Tasks
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Logistic 
Regression

K-Nearest 
Neighbor

Support 
Vector 
Machine

Random 
Forest

ConvNet

Test Test Test Test Test

Tropical Cyclone 95.85 97.85 95.85 99.4 99.1

Atmospheric Rivers 82.65 81.7 83.0 88.4 90.0

Weather Fronts 89.8 76.45 90.2 87.5 89.4

Supervised Classification Accuracy



Semi-Supervised Convolutional 
Architecture

Encoder Decoder

Classification + Bounding Box Regression

Contributors: Evan Racah, Chris Pal, Chris Beckham, Tegan Maharaj



Reconstruction Results
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Classification + Regression Results

Ground Truth
Prediction

Contributors: Thorsten Kurth, Jian Yang, Ioannis Mitliagkas, Chris Pal, Nadathur
Satish, Narayanan Sundaram, Amir Khosrowshahi, Michael Wehner, Bill Collins.



Deep Learning at 15PF (SC’17)



Determining the Fundamental Constants 
of Cosmology

2



2
Science challenge

• Comparison of simulation results 
with observations to correct for 
observational systematics

Analysis Results
• DB-Scan: applied to 1T HACC 

simulation dataset; clustering 
computed in 20 minutes on 100K 
Edison cores. 

• Galactos: O(N2), 3-pt correlation 
code processed 2B Outer Rim 
galaxies in 15 minutes on 650,000 
Cori cores. 9.8PF performance. 
(SC’17)

Determining the Fundamental Constants 
of Cosmology

Contributors: Debbie Bard, Brian Friesen, Mostofa Patwary, Nadathur Satish, 
Zarija Lukic, Pradeep Dubey



3D Convolutional Network

Contributors: Simak Ravanbaksh, Junier Oliva, Sebastian Froenteau, Layne Price,
Shirley Ho, Jeff Schneider, Barnabas Poczos

• Regress	cosmological	constants	directly	from	simulation	data	
• Reasonable	accuracy	for	2	constants;	currently	extending	framework	to	run	on	Cori



Generative Adversarial Networks

Contributors: Mustafa Mustafa, Debbie Bard, Wahid Bhimji, Rami Al-Rfou, Zarija
Lukic

Validation Generated
GANs generated maps exhibit the same gaussian and 
non-gaussian structures as full simulations. 

Power spectrum: 
fourier modes



Creating a catalog of all objects 
in the Universe
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3
Astronomy challenge

• Inferring stars and galaxies from all 
available telescope data

Analysis Results
• Developed Graphical Model and 

variational inference techniques
• Demonstrated on 8B parameters, 188M stars 

and galaxies

• Processed all SDSS data in 15 minutes
• First Julia application to exceed 1PF 

performance 
• 1.3 M threads on 650,000 KNL cores 

Celeste: A Generative Model of 
Astronomical Images

Contributors: Jon McAuliffe, Ryan Adams, Jeff Regier, Andy Miller, Keno Fischer, 
Kiran Pamnany, David Schlegel, Rollin Thomas



Celeste Galaxy Model

Contributors: Jeff Regier, Jon McAuliffe



Variational Auto-Encoder
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Celeste Galaxy Model Results

• The	Celeste	galaxy	model	outperformed	
bivariate	Gaussian	densities	for	99.3%	of	
galaxy	images.	

• Qualitative	results	from	t-SNE	indicate	
that	the	neural	network	learns	a	
compact	representation	of	galaxy	shapes	
and	orientation.



Understanding the Brain4



Speech Prosthesis
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Decoding Speech
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Contributors: Jesse Livezey, Kris Bouchard, E. Chang



DNNs achieve best decoding performance

- 40 -

• Classify spoken syllable from 
spatiotemporal patterns of 
human neural recordings

• Fully Connected, Feed-
forward Network

• All hyper-parameters 
optimized with Spearmint

• L2 regularization and dropout



DNNs recover meaningful latent structure
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Hierarchical clustering of confusion 
matrix reveals organization of 
speech control signals.



5 Oxford Nanopore Sequencing



LSTMs provide state-of-the-art 
performance

Team: Ben Brown, Marcus Stoiber



Fundamental Constituents of Matter6



• Colliding protons	with	high	
energy

• Particles	produced	in	collision	
(“event”)	hit	detector

• Physicist need	to	decide	which	
events	are	interesting	and	which	
can	be	described	by	physics	we	
know

• Large amount	of	data	recorded	
– 1PB/s	reduced	to	100GB/s
– 10PB	of	raw	data/year

LHC Experiment

Contributors: Wahid Bhimji, Thorsten Kurth, Steve Farrell, Evan Racah



LHC Classification Approach
• Bin	energy	from	sub-detector	(‘calorimeter’)	

and	unroll	cylinder	to	form	64x64	or	224x224	
image	

• Train	CNN	on	labelled	data	from	full	detector	
simulations	to	directly	classify	signal	
(‘Supersymmetry’)	from	background

• Benchmark	from	existing	analysis	on	high-level	
physics	variables	

• Increased signal	efficiency	at	same	background	
rejection	without	using	high-level	physics	
variables

Input    Conv+Pool(1)  Conv+Pool(2)     Conv+Pool(3)  (Conv+Pool(4)) Fully Connected (FC)     FC   Output
1(or3)x64x64    64x32x32   128x8x8                256x4x4                                     4096                           512 1



LHC Particle Tracking
• Reconstruct	thousands	of	particle	tracks	from	

tens	of	thousands	of	spacepoint “hits”
• Traditional	algorithms	have	limitations

– Hand-engineered,	quadratic	(or	worse)	
scaling,	linear	dynamics

• HEP.TrkX project	is	exploring	ML	solutions
• Using	recurrent	architectures	for	track	dynamics

–Kalman-filter-like	state	estimation
–Smarter	combinatorial	tree-search

• Using	CNNs to	classify	hits
• Using	CNN	+	LSTM	to	“caption”	a	detector	image

Contributors: Caltech, FNAL, LBL collaborators. ASCR/HEP Pilot project 



CaloGAN

48

• Fast	&	accurate	generation	of	energy	
deposits	in	a	calorimeter	detector	
inspired	by	that	of	the	
ATLAS	experiment	at	
the	LHC

3x96

12x12

12x6

• Ad-hoc	design	to	fit	Physics	data:
• sparsity
• high	dynamic	range
• highly	location-dependent
features

Contributors: Michela Paganini, Luke de Oliveira, Benjamin Nachman

• Goal:	accelerating	particle	physics	simulation



Average	energy	deposition	per	calorimeter	layer	in	the	GEANT4	
training	dataset	(top)	and	in	the	GAN	generated	dataset	(bottom)

Ten	positron	showers	generated	by	varying	shower	energy	in	equal	intervals	
while	holding	all	other	latent	codes	fixed.	The	three	rows	are	the	shower	

representations	in	the	three	calorimeter	layers.	The	energies	of	showers	in	the	
green	box	were	within	the	range	of	the	training	dataset,	while	the	ones	in	the	red	

box	are	in	the	extrapolation	regime.	

• Realistic	average	and	individual	
images

• Diverse	samples

• Conditional	generation	based	on	physical	
attributes	

• Parameter	interpolation	and	extrapolation

CaloGAN

Contributors: Michela Paganini, Luke de Oliveira, Benjamin Nachman
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Short-Term Challenges

• Complex	Data	
– 2D/3D/4D,	#channels,	dense/sparse,	graph	structure	

• Hyper-Parameter Optimization
– Tuning	#layers,	#filters,	learning	rates,	schedule	is	a	black	art

• Performance	and	Scaling
– Current	networks	take	days	to	train	on	O(10)	GB	datasets,	we	
have	O(100)	TB	datasets	on	hand	

• Scarcity	of	Labeled Data
– Communities	need	to	self-organize	and	run	labeling	campaigns
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Long-Term Challenges
• Lack	of	Theory

– Limits	of	supervised,	unsupervised,	semi-supervised	learning	

• Formal	protocol	for	applying	Deep	Learning	
– Applied	Math	has	developed	methodology	over	30	years,	no	
analog	in	DL

• Interpretability:	‘Introspect	It’	vs.	‘Build	It’
– Black	Box	classifier;	need	to	visualize	representations
– Incorporate	domain	science	principles	(physical	consistency,	etc)

• Uncertainty	Quantification
- 53 -





2018-2020

• Broad	deployment	of	tools	at	HPC	centers	and	Cloud	

• Domain	science	communities	will	start	self-organizing	
and	conducting	labeling	campaigns

• Researchers	will	exploit	low-hanging	fruit
– Classification,	Regression,	Clustering	problems	will	be	(nearly)	
completely	solved



2020+ 

• Entire	data	archives	are	segmented	and	classified
– Anomaly	detection;	Correlation;	Causal	Analysis

• Long-term	challenges	are	formulated	and	addressed
– Generalization	limits,	UQ
– Interpretability,	incorporating	domain	science	principles

• Will	AI	replace	us?
– What	is	the	‘value	add’	of	the	scientist?



2020+ Workflow
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Simulation
Archives

Observational 
Data

• Interactive Exploration
• Semantic Labels

• Patterns
• Clusters 
• Anomalies

• Mechanisms 
• Hypothesis



Conclusions

• Machine	Learning	is	an	emerging	requirement	in	the	
DOE	community	

– NERSC	has	invested	in	staff,	hardware	and	software	
– Big	Data	Center	is	enabling	capability	applications	

• Deep	Learning	has	enabled	breakthroughs	in	industry;	
direct	analogs	in	DOE	applications	

– Current	success	stories	from	BER,	HEP,	NP;	broader	class	of	
applications	poised	to	benefit

• Low-hanging	fruit	can	be	exploited	in	the	next	2-3	years,	
but	long-term	challenges	exist	
• Exciting	times!



Questions?
prabhat@lbl.gov


