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NERSC: the Mission HPC Facility for DOE
Office of Science Research

EﬁmERTMREEFY Office of Largest funder of physical
Science science research in the U.S.
-‘_}: b ’ |

Particle Physics, Astrophysics Nuclear Physics Fusion Energy, Plasma Physics
6,000 users, 700 projects, 700 codes, 48 states, 40 countries, universities & national labs
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NERSC has a long history of working with
experimental and observational science projectsm

Palomar Transient Planck Satellite Alice Atlas
Factory Cosmic Microwave Large Hadron Collider Large Hadron Collider
Supernova Background

Radiation

Dayabay ALS LCLS Joint Genome Institute
Neutrinos Light Source Light Source Bioinformatics
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What’s different?

 Proliferation of data from DOE user facilities

 Scientific workflows have become more

complex

— Streaming data to HPC facilities
— Real-time/Interactive access

— Rich ‘Data’ stack

simulation and data analytics

— Advanced Machine Learning and Statistics methods +
tools required
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DOE Exascale Requirements Reviews &

ADVANCED SCIENTIFIC
COMPUTING RESEARCH

- Broad input from DOE B
experimental facilities Flll

y 4 .«

NUCLEAR PHYSICS

HIGH ENERGY PHYSICS

BIOLOGICAL AND
ENVIRONMENTAL RESEARCH

- Focused on the exascale
‘ecosystem’, beyond compute

FUSION ENERGY SCIENCES

BASIC ENERGY SCIENCES

e U T @R EXASCALE
Pres o & B REQUIREMENTS
— il REVIEW

- Machine Learning called out
as an important cross-cut
theme
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HEP BER BES NP FES

Astronomy | Cosmology | Particle Climate Genomics | Light Materials Heavy Plasma
Physics Sources lon Physics
Colliders

Classification X X X X X X

Regression X X X X

Clustering X X X X X X

Dimensionality X
Reduction
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Surrogate X X X X

Models

Design of X X X X

Experiments

Feature X X X X X X X

Learning
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NERSC Platforms

Edison: Cray XC-30
= 3.6 PB

5 x SFA12KE

5PB
DDN9900 &
NexSAN

Cori: Cray XC-40 bk ﬁ e
M B— AEUESS NetApp 5460
171 : ©15PB
Haes LA BARIS :w
— =

50 PB stored, 240
' > 12 GB/s PB capacity
Ph1: 1630 nodes, 2.3GHz Intel “Haswell” Cores, 203TB RAM
32x FDR IB g

16x FDR IB

5,576 nodes, 133K, 2.4GHz Intel “IvyBridge” Cores, 357TB RAM

Ph2: >9300 nodes, >60cores, 16GB HBM, 96GB DDR per node

Data-Intensive Systems
PDSF, JGI,KBASE,HEP Ethernet &

14x QDR IB Fabric

Science Friendly Security 1 x 100 Gb
Production Monitoring

2x10Gb

Vis & Analytics Data Transfer Nodes Power Efficiency Software Defined
Adv. Arch. Testbeds Science Gateways WAN Networking



NERSC Big Data Stack

Capabilities Technologies
Data Transfer + Access @ GridFTP Jupyter @' M

globus online

Workflows Fir eW y SWI]CC»"’
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Data Management ‘ PostgreSQL
¥SciDB ‘mongo MQS&
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Data Analytics * theano
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Data Analytics Methods

Machine Learning

Graph
Analytics

Image/Signal
Processing

Linear
Algebra
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Bloomberg v Facebook to Open New Artificial Intelligence Lab in Montreal

oy | SRS - W g
E Facebook toOpen New o
-4 Artificial IntelligenceLabin

Montreal

‘“ MIGIER The iBrain Is Here—and It’s Already Inside Your Phone

THE IBRAIN IS HERE—AND IT'S
ALREADY INSIDE YOUR PHONE

Inside Baidu's Billion Dollar Push To Become An Al

Global Leader

ARTIFICIAL INTELLIGENCE | INTEL |

Intel is paying more than $400 million to buy deep-
learning startup Nervana Systems

The chip giant is betting that machine learning is going to be a big deal in the data center.

IBM and MIT to pursue joint research in artificial
intelligence, establish new MIT-IBM Watson Al Lab

IBM plans to make a 10-year, $240 million investment in new lab with MIT to advance
Al hardware, software, and algorithms.



Computer Vision

person

person
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ImageNet Performance

ILSVRC Top 5 Error on ImageNet
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Deep Learning
B Human
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Speech Recognition

iMore



Self-Driving Cars
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Can Deep Learning work for Science?

/ Similarities

Tasks

e Pattern Classification
* Regression
Clustering

* Feature Learning

Y
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Differences \

Unique attributes of Scientific

Data

Multi-channel / Multi-variate
Double precision floating
point

Noise and Artefacts
Statistics are likely different
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Climate Science Tasks NEF

Classification Instance
+ Localization

Object Detection

Classification

Segmentation
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Supervised Classification Accuracy

Logistic K-Nearest Support Random ConvNet
Regression Neighbor Vector Forest
Machine
Test Test Test Test Test
Tropical Cyclone 95.85 97.85 95.85 99.4 99.1
Atmospheric Rivers 82.65 81.7 83.0 88.4 90.0
Weather Fronts 89.8 76.45 90.2 87.5 89.4
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Semi-Supervised Convolutional
Architecture

Encoder Decoder

x12x18
%84( x8x48x72 51 ‘ 384 )848
56(2 N 256(2)x8xI6xT44
28(2)x8x192x788
/S(Z)XSXI‘)ZXZSS . E | -
64(2)x8x384x576
64(2)x8x384x576 A 20 @ N

o (‘l s Probabilities . . . — e
16(2)x8x768x1152 e Ob]cctncss 16(2)x8x768x1152

 Probabilit

4x4x12x18 4x4x12x18 2x4x12x18

Classification + Bounding Box Regression
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Reconstruction Results

original reconstruction
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Ground Truth 600
Prediction

0 200 400 600 800 1000
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Satish, Narayanan Sundaram, Amir Khosrowshahi, Michael Wehner, Bill Collins.
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Speedup

Deep Learning at 15PF (SC’17)

Compute group 1 Compute group G
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Determining the Fundamental Constants
of Cosmology

Science challenge

« Comparison of simulation results
with observations to correct for
observational systematics

Analysis Results

« DB-Scan: applied to 1T HACC
simulation dataset; clustering
computed in 20 minutes on 100K . R S
Edison cores. I -

« Galactos: O(N?), 3-pt correlation
code processed 2B Outer Rim RS
galaxies in 15 minutes on 650,000 f V \f“\r'\(”‘\m
Cori cores. 9.8PF performance. T ‘ MHWW N\
(SC’17) . 2 °

log(k/h Mpc™!)

43)

2

log(P(k)/h3Mpc

0
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Zarija Lukic, Pradeep Dubey
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3D Convolutional Network
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* Regress cosmological constants directly from simulation data

* Reasonable accuracy for 2 constants; currently extending framework to run on Cori
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Generative Adversarial Networks

generated distribution true data distribution

_ 1 = 3300 | = 23300 | = 43300
I[D ( b) -4~ Validation ﬁ
unit gaussian ]P)model data GAN /‘\ .f. Y
— . °
. 210 ]
generative 5 ;‘ ! ] 's
O model . £ ! :‘ )
(neural net) " floss| - i
z .t £ 10! #
3
(&) i
image space image space ! !
A A i m : |
blog.openal.com/generative-models 0e+00 3e-04  5e-04  8e-04  1le-03 204 4e-04 6e-04  le-04 2e-04 3e-04
(l+1)P/2n (l+1)P/2r (l+1)PR/2n
. » A
103

L+ 1)P/2n

Power spectrum:
fourier modes

—— Validation
GAN

10° 10*

Valldatlon | o Generated'

GANSs generated maps exhibit the same gaussian and
non-gaussian structures as full simulations.
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Celeste: A Generative Model of
Astronomical Images

Astronomy challenge

» Inferring stars and galaxies from all
available telescope data

Analysis Results

» Developed Graphical Model and
variational inference techniques

 Demonstrated on 8B parameters, 188M stars Te
and galaxies

* Processed all SDSS data in 15 minutes
 First Julia application to exceed 1PF

performance
1.3 M threads on 650,000 KNL cores

celestial P
body L

point spread
function

. Qnp
. {nb
® T

PR, U-S. DEPARTMENT OF Office of
'ENERGY Science Contributors: Jon McAuliffe, Ryan Adams, Jeff Regier, Andy Miller, Keno Fischer,

Kiran Pamnany, David Schlegel, Rollin Thomas




Celeste Galaxy Model

An irregular galaxy.

NGC 4753, an elliptical  NGC 60, a spiral galaxy
galaxy with interesting  with unusually distorted

dust filaments. arms.
R U5-beoamaner OF | Office of Contributors: Jeff Regier, Jon McAuliffe T !
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Variational Auto-Encoder

:!;’ N(0,1)

dense 1-1\
exp *
/ dense
< 11 relu
8 ///;i/;" z
\\\\5\ :
69 x 69 dense
linear
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linear
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* The Celeste galaxy model outperformed
bivariate Gaussian densities for 99.3% of
galaxy images.

* Qualitative results from t-SNE indicate
that the neural network learns a
compact representation of galaxy shapes
and orientation.
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Speech Prosthesis




Decoding Speech

PR TR

Anterior Posterior
Ventral g |‘-'—- I

Central Sulcus

§ 800 -500
Sylvian Fissure Time (ms) 3890 Time (ms) Time (ms)

B U.S. DEPARTMENT OF Oﬂ-’lce
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DNNSs achieve best decoding performance

Syllable Classification Accuracy increase per
_ Accuracy training sample
» Classify spoken syllable from 60 ,
spatiotemporal patterns of SRR
human neural recordings D —
Q— - )
Y £ 20 : g3
° - QO QO
Fully Connected, Feed £ 40| © 53
forward Network < 9
= —
S L oo
» All hyper-parameters = 210 86
. . . . @) o Q
optimized with Spearmint O > 3 3
< 20} ©
. . >
* L, regularization and dropout 9 °
I < i
I/f 0 o
Chance——'—f_——,———f——— :
Linear Deep Linear Deep
Network  Network Network  Network
-40 -

-
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a)

Target Syllable

Distance

Sibilant

Labial Dorsal Tongue Coronal Tongue l
Bilabial Labio-dental Alveolar
/i/ /el
/al | fi/
]
=
||

# clusters b)

10 30 50

CONSONANTS
(t] [d] [n] (k] [g]

Coronal Dorsal

(p] [b] [m]
Labial

Central Back

VOWELS

Front

Hierarchical clustering of confusion
matrix reveals organization of
speech control signals.

Predicted Syllable
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Oxford Nanopore Sequencing

~
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LSTMs provide state-of-the-art

performance
\ o — «Q
T‘Lil: ‘T T ‘G C
o o>P{LSTM 1 P |LSTM 1 E#>|LSTM 1 3> {LSTM 1 23> - -« -
v v v v
o3 LSTM 2 P> |LSTM 2 > |LSTM 2 3> |LSTM2 [>3> - - -
v v v v
v v v v
FC Layer FC Layer FC Layer FC Layer £t = Memory Cell
v Vv L7 v Allows pausing and resuming

Probabilities

Start + K-mer || Start + K-mer || Start + K-mer
Probabilities Probabilities

Start + K-mer
Probabilities

eI, U.S. DEPARTMENT OF

EN ERGY Science
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Team: Ben Brown, Marcus Stoiber

with no change in sequence
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LHC Experiment

* Colliding protons with high
energy

* Particles produced in collision
(“event”) hit detector

* Physicist need to decide which
events are interesting and which
can be described by physics we
know

* Large amount of data recorded
— 1PB/s reduced to 100GB/s

— 10PB of raw data/year
@R o= s v vy Office of Contributors: Wahid Bhimiji, Thorsten Kurth, Steve Farrell, Evan Racah ceeery
\\ ENERGY Science s_s;;;lm‘xl




LHC Classification Approach

* Bin energy from sub-detector (‘calorimeter’)
and unroll cylinder to form 64x64 or 224x224
image

* Train CNN on labelled data from full detector
simulations to directly classify signal
(‘Supersymmetry’) from background

e Benchmark from existing analysis on high-level
physics variables

e Increased signal efficiency at same background
rejection without using high-level physics

(4
variables
3
7 &
7 H
v 7 5
[ v 7/ g
I E
2 LT =
g | e
Pt
7/ é
A
Input  Conv+Pool(1) Conv+Pool(2) Conv+Pool(3) (Conv+Pool(4)) Fully Connected (FC) FC Output
1(or3)x64x64 64x32x32 128x8x8 256x4x4 4096 512 1

= N N~
(¥, o w
Cluster energy [Log{MeV)]

|y
(=}

o
(W)

L

=
o

e
©
L

e
o
)

o
»
L

0.2 1

—— CNN
® Physics Selections

0.0 T
0.0000 0.0002

0.0004 0.0006 0.0008 0.0010

False Positive Rate
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LHC Particle Tracking

* Reconstruct thousands of particle tracks from
tens of thousands of spacepoint “hits”

e Traditional algorithms have limitations
— Hand-engineered, quadratic (or worse)
scaling, linear dynamics

e HEP.TrkX project is exploring ML solutions

* Using recurrent architectures for track dynamics
—Kalman-filter-like state estimation
—Smarter combinatorial tree-search

e Using CNNs to classify hits

e Using CNN + LSTM to “caption” a detector image

Credit: Andy Salzburger

Input track image Stub features Segment features Higher level
features

Stub filters
E @ E Convolutions and pooling ——

5;«.* .,3{"% U.S. DEPARTMENT OF Office of . . . . r'rr:rrr "
£ ) ENERGY P Contributors: Caltech, FNAL, LBL collaborators. ASCR/HEP Pilot project f\l 7
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CaloGAN

Real Fake « Goal: accelerating particle physics simulation

o 4 « Fast & accurate generation of energy

{% deposits in a calorimeter detector :
inspired by that of the E=

x  gwaw ATLAS experiment at
CeETEwwEse the LHC
SRR
EEEL O NEEEE .

ST T P
dEGEEESHSn

|
« Ad-hoc design to fit Physics data: ul m |
« sparsity Lo
« high dynamic range J———
 highly location-dependent
features
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CaloGAN

Ene gy(M V)
Energy (MeV)

 Cell ID

2
10°
g
2
10 o
3
3
-
10!
1 100 10|
1 1

0102030405060708090 012345678 91011
Cell

n Cell ID
10°
107 a
3
S
-
10t
100 1
1
010 20 30 40 30 50 70 80 90

012345678 91011
nCellID

nCell ID

Energy (MeV)
Energy (MeV)

# Cell D
6 Cell ID
250w uouswn—o

2 3
n Cell ID

Average energy deposition per calorimeter layer in the GEANT4
training dataset (top) and in the GAN generated dataset (bottom)

« Realistic average and individual
images

« Diverse samples

Energy (MeV)

Energy (MeV)

« Conditional generation based on physical
attributes

« Parameter interpolation and extrapolation

>
»

Energy

M i e g
0 BN E ob(gh ok mr gy ok

_i;'dif:ﬂ':ﬂ'lll-l 4 W m N

EDNEEWREEFY gﬁ'ce of Contributors: Michela Paganini, Luke de Oliveira, Benjamin Nachman f\
cience

Requested (GeV) 1.0 23.1 452 673 894 111.6 1337 1558 177.9 200.0
Generated (GeV) 1.4 23.1 46.8 693 91.6 113.6 1352 1593 1844 2112

Ten positron showers generated by varying shower energy in equal intervals
while holding all other latent codes fixed. The three rows are the shower
representations in the three calorimeter layers. The energies of showers in the
green box were within the range of the training dataset, while the ones in the red
box are in the extrapolation regime.
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Classification X X X X X X

Regression X X X X

Clustering X X X X X X

Dimensionality X
Reduction

x| X X | X | X
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Surrogate X X X X

Models

Design of X X X X

Experiments

Feature X X X X X X X
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HEP BER BES NP FES
Astronomy | Cosmology | Particle Climate Genomics | Light Materials Particle Plasma
Physics Sources Colliders | Physics

Dimensionality

Reduction

Design of

Experiments

Anomaly
Detection




Short-Term Challenges

 Complex Data
— 2D/3D/4D, #channels, dense/sparse, graph structure

* Hyper-Parameter Optimization
— Tuning #layers, #filters, learning rates, schedule is a black art

* Performance and Scaling

— Current networks take days to train on O(10) GB datasets, we
have O(100) TB datasets on hand

 Scarcity of Labeled Data
— Communities need to self-organize and run labeling campaigns

&S U.S. DEPARTMENT OF Office of

\ ENERGY Science "92-




Long-Term Challenges

* Lack of Theory

— Limits of supervised, unsupervised, semi-supervised learning

* Formal protocol for applying Deep Learning

— Applied Math has developed methodology over 30 years, no
analog in DL

* Interpretability: ‘Introspect It’ vs. ‘Build It’
— Black Box classifier; need to visualize representations
— Incorporate domain science principles (physical consistency, etc)

e Uncertainty Quantification

Office of

Science -53-







2018-2020

* Broad deployment of tools at HPC centers and Cloud

* Domain science communities will start self-organizing
and conducting labeling campaigns

* Researchers will exploit low-hanging fruit

— Classification, Regression, Clustering problems will be (nearly)
completely solved

Office of
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2020+

':\,

* Entire data archives are segmented and classified
— Anomaly detection; Correlation; Causal Analysis

* Long-term challenges are formulated and addressed

— Generalization limits, UQ
— Interpretability, incorporating domain science principles

* Will Al replace us?
— What is the ‘value add’ of the scientist?

Office of
Science




2020+ Workflow

 Mechanisms
* Hypothesis

% U.S. DEPARTMENT OF

Interactive Exploration

Semantic Labels

Office of
Science

Patterns
Clusters
Anomalies

-57-

Simulation
Archives
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Conclusions

* Machine Learning is an emerging requirement in the
DOE community

— NERSC has invested in staff, hardware and software

— Big Data Center is enabling capability applications
* Deep Learning has enabled breakthroughs in industry;

direct analogs in DOE applications

— Current success stories from BER, HEP, NP; broader class of
applications poised to benefit

* Low-hanging fruit can be exploited in the next 2-3 years,
but long-term challenges exist

* Exciting times!
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Questions?

prabhat@lbl.gov




