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ACDM 1s a big success!
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The Umverse com osmon IS Unknown”
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What we do not know about Dark Matter

Most of its basic properties are unknown

Is it made of a single species?

Is it a particle? A fermion? A boson?

If it is a particle, what is its lifetime? we can constrain it, but it is model dependent.
Does it have non-gravitational interaction?

How was it produced?

s it the same “dark matter” from cosmological to galactic scales?

and many more...
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Searching for non-gravitational DM interaction

Most of our searches are motivated by the WIMP miracle

Production Annihilation Scattering

SM X
X
D

X SM

=

SM

in particle physics
Collider Indirect detection Direct detection

in cosmology

Relic abundance Energy injection Momentum transfer

There are many other models that can be probed via cosmological observables!!
e.g. sterile neutrinos, Axions, Primordial Black Holes...
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There have been many DM “discoveries™...

Did LIGO detect dark matter? S NEWS

Simeon Bird/* Ilias Cholis, Julian B. Munoz, Yacine Ali-Haimoud, Marc AMS Space Experiment Sees Hints of Dark
Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, and Adam G. Riess! Matter Particles

! Department of Physics and Astronomy, Johns Hopkins University,
3400 N. Charles St., Baltimore, MD 21218, USA
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Summary

Today, | will discuss

Indirect Detection of Dark Matter with the CMB;
Comparison to other cosmological probes: BBN, SD.
Implications for cosmic and y-ray excesses.

DM-baryon scattering in cosmology:

|s there Dark Matter in EDGES data?
Constraints from the CMB.

V. Poulin - JHU RPM at LBNL-11/01/18




Part |

Indirect detection in Cosmology
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CMB 1n a nutshell

2-point correlation
function in Fourier
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Snapshot of inhomogeneities at photons last scattering around z ~ 1000, when free
electrons and proton (re)combine.

Most precise probe of the DM density — a matter component sensitive to gravity, , i.e. its
energy density dilutes like (1+2)3, but insensitive to the radiation pressure.

The CMB is highly sensitive to the free electron density through Thomson scattering, which
dictates the visibility function and the optical depth.

Energy injection from DM affect the free electron density around/below recombination.
This can change the thickness/time of last scattering and residual scattering.
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The recombination history

Exponential Reionization
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Back of the envelope estimate of constraints

Energy injection can ionize (or heat) the medium, but x. at z~1000 measured at % level.

Consider annihilation of mpy=1 GeV - what is the constraint on the number density of
annihilated/decayed CMB?

i) how many ionizations per photon:1 GeV / 13.6 eV ~ 108

i) how many DM compared to baryons: npm = 5 * np for mpy = 1 GeV.

==> if 1/5th* 10-8 of the DM decays ALL of the baryons would be re-ionized...

iii) fraction of annihilating/decaying particles can reach f<~ 0.01/5/108~10-11

Complication: Electromagnetic cascade in an “optically thin” plasma. Most of the
photons propagate freely and could be visible as extra-galactic background light.
Slatyer, PRD93 2016

V. Poulin - JHU RPM at LBNL-11/01/18




Numerical tool: ExoCIL.ASS

https://github.com/lesgourg/class_public/ Stoecker, Lesgourques, Kramer, VB, JCAP 0318

Key quantity to estimate: the energy deposited into ionization/heat

dE dE
= fD)——

dVdt dvde |
dep,c inj

Plasma Properties Particle/Astro-Physics

an energy injection history dE/dVdtiy. currently implemented: DM s-wave annihilations,
decay, Primordial Black Hole evaporation and matter accretion.

“energy deposition function per channel” f(z): From a spectra of injected electrons and

photons, compute the response of the plasma. Slatyer, PRD93 2016

Soon: DarkHistory developed by H. Liu, G. Rigdway and T. Slatyer (MIT);
Global 21cm with E. Kovetz and B. Wang (JHU);
DM-b scattering by K. Boddy (JHU);
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https://github.com/lesgourg/class_public/

DM annihilations

e.g. Belikov++ PRDS80 (2009), Cirelli++ JCAP (2009), Slatyer, PRD 2015; VP, Lesgourgues, Serpico [CAP 2015
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Pann =2.3 x107"m?/s/kg
| —— P =2.3x10"°m¥s/kg

Base ACDM from Planck 2015
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Recombination delay: shifts of the peak, more diffusion damping.
Higher freeze-out plateau: reionization bump higher, higher optical depth.
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Planck 2018 results

Computed by ]. Lesgourgues for Planck 2018 data release using ExoCLASS

Excluded by CMB

Fermi/HESS e~ e™
AMS /PAMELA positron fraction |

Thermal cross-section

5‘\' """"""""""""""

AMS anti-proton excess

Fermi Galactic center excess

102 103 10
my [GeV] Aghanim++ 1807.06209

17% improvement since 2015 essentially thanks to polarization.

Exclude thermal relics with my < 10-30 GeV.

Do not suffer from local astrophysical uncertainties (DM profile, density...).

CMB complements cosmic/y-rays for pure electronic channel/low masses (keV-MeV).
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Constraints on decaying particles

DM = 1 stable + 1 unstable particle VP, Lesgourgues, Serpico; JCAP (2016 & 2017)
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! reflects difference between energy deposition efficiency.
Results are reliable for my in [103,1012] eV whatever decay channel !
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Constraints on decaying particles

DM = 1 stable + 1 unstable particle VP& Serpico; PRD (2016)
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At short lifetimes: BBN provides the strongest constraints.
Spectral distortions could be a major probe in the future.
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PART 11

DIRECT DETECTION WITH THE CMB:
IMPLICATIONS FOR EDGES
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Direct Detection in Cosmology

CMB/21cm is sensitive to momentum and heat transfer between DM and baryons.

Thomson

Scattering

Protowns
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Why care about the CMB?

Boddy & Gluscevic, 1712.07133, 1801.08609

Studying DM-baryon scattering in the early universe is complementary to standard

Direct Detection.

CMB can be used to study the most common non-relativistic EFT operators

CMB bounds extend (at least) down to keV mass-scale (typical bound for a thermal,
warm DM).

CMB can probe "hadronic” cross-sections for which DD experiment are insensitive
due to earth shielding. e.g. Hooper&McDermott 2018

CMB bounds do not rely on knowledge of local halo properties.

We study DM-p interaction and parametrize o(v) = oy(v/c)"
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Consider o(v) = oy(v/c)"
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with oo at its 95% C.L. upper limit

MT rate / expansion rate

|

inefficient drag

lllllll I I lllllll

10* 10°
redshift 2

Figure by K. Boddy (JHU)
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Consider o(v) = oy(v/c)"

T efficient drag

with oo at its 95% C.L. upper limit
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Consider o(v) = oy(v/c)"

What have we learned? MT is constrained to be < 1% at z = 30000!

with oo at its 95% C.L. upper limit
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Is there Dark Matter in EDGES data?

Bowman++, nature25792 Barkana, nature25791
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o EDGES has discovered an anomalous global 21cm absorption signal.

o Dark Matter cooling down baryons might be an explanation.

o Strong constraints on such models in particular from the CMB!
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Global 21em 1n a Nutshell

Spin Temperature
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scattering with CMB collision within the gas

o 21cm theoretically “easy” from z~1000 to 30; then huge astrophysical uncertainty.

Cohen++ 1709.02122 1
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Is everything “wrong”™ about EDGES?

Cohen++ 1709.02122 Bowman++, nature25792
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1. Too strong absorption

2. Too sharp downward transition
3. .Flat.(?1)

If true, explaining EDGES might require both weird DM and Astrophysics!
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How can we explain the signal?

First, it could be a “false” signal:
i) Foreground: to extract the signal (~mK level) need to remove synchrotron (1000 K level)
ii) Instrument: systematics associated to the beam/data taking could affect the signal.
Hills++ 1805.01421, Bradley++ 1810.09015

If we assume the signal to be real, what could it tell us:

T
0T}, (1 — —)
1

Ty # Temb could be higher: i.e. higher number of photons in the frequency range
measured by EDGES. Potential link with the ARCADE2 excess.
Feng ++ 1802.07432, Fraser++1803.03245, Pospelov++ 1803.07048
ii) Tscould be smaller: minimal Ts=Tb, hence it would indicate a lower Tb.

Early decoupling? e.g. early dark energy (excluded by CMB).

: ing?
DM-b scattering? Barkana, nature25791, Munoz&Loeb 1802.10094, Hill&Baxter 1803.07555

If true, many interesting consequences for astrophysics, dark matter, axions...!
Ewall-Wice++ 1803.01815, Kaurov++1805.03254, Slatyer&Liu 1803.09739
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Have we (re-)discovered Dark Matter ?

Barkana, nature25791, Munoz&Loeb, 1802.10094, Berlin++1803.02804, Barkana++ 1803.03091
cross-section must scale like (v/c)4to avoid CMB constraints, i.e. light/massless mediator.

Interaction with neutral hydrogen: gp ~4*10-43 cm2. M < 1GeV respects CMB constraints!

Long-range force excluded by 5th force experiment: milli-charged DM only survivor.

Problem: at cosmic dawn, only 10-4 of the gas is charged...

Millicharged Dark Matter Fraction fpy = 1

f=100%
Killed by CMB!

SN1987A

02 0
10° 102 107 100 101 10 ! 1
m, (GeV) m, [MeV]

Barkana, nature25791 Berlin++1803.02804
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Signs of “fractional” Dark Matter?

Millicharged Dark Matter Fraction fpy = 0.01

107

SN1987A 10-®

o 1 3 10 :
 Berlin++1803.02804 x[MeV]

It has been claimed that f~1% could avoid the constraints.

nb: what if there was a “dark recombination” at z > 30000? TBD...

[,.,=ovn, but T',_,=ovn,: canfractional DM avoid CMB constraints?
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Fractional Dark Matter 1s non hinear

There exists a supersonic bulk relative velocity between baryons and DM!
Tseliakhovich&Hirata PRD (2010)

This leads to non-linear equations that cannot be solved trivially in Fourier space.

In the past, studies focused on f = 100% and assumed V,¢| = V| cpm
Dvorkin++1311.2937, Xu++ 1802.06788, Slatyer++ 1803.09734

Temperature evolution — Heat exchange rate

. a T R’y o¢ O(V o)V axn
TX+2C_LTX:2R,X*7Ub-TX) X (rel) rel*I'b

.
T+ 25T, = 222 R (T, - Th)) + 2 22 X R (T, — )
a Mme my Py

Momentum exchange rate
Bulk velocity evolution

8‘7 —0_‘ a—» —

B—TX — Vo, + Vi =BV, = V)

oV

=2 = Vo, + - Vb R,(V, — V) + 'ZXRX(V ~ V)




Fractional Dark Matter 1s non hinear

for small f this approximation is *not* valid!!

We devised several prescriptions to deal with these equations, all give similar
results, in good agreement with former studies for f = 100%.

Boddy, Gluscevic, VP++,1808.00001

Temperature evolution

T, +2 T, = 2R, {( ~T,)
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cross section o [cm?

103 10
redshift z

m =1 MeV

R ' oo rrr
10" 10°
DM interacting fraction fy [%]

Boddy, Gluscevic, VP++ ,1808.00001

baryons

LR LR LR LR ror et
102 103 104 10°
redshift z

For small fraction, the CMB constraint
vanishes! the interaction saturates
(tight-coupling) and DM act (almost) like
baryons.

f <0.4%

= oee als DePu’tter++ 1511‘616 i

PSS e Sa et 2

RPM at LBNL-11/01/18




cooling saturates for very high €

i_mleMeV 1 _m, =1MeV
C c=8x%x10"° e=8x107°

— Tems — Tcems ] i — Toms

— T, (ACDM) — T, (ACDM) _ — Ty (ACDM)

small € —(m) — @) : — @)
—(Ty) ' —(Ty)
500 1000 10 20 = 50 200 500 10 20 50 200 500 1000

— fy=0.4%

— f=0.2%
fy = 0.05%

— [ =0011%

_3000 N PR 1 N N 1
107 10® 107 107
€

tx > 0.015%; otherwise cooling inefficient.
Kovetz, VP++1807.11482
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Constraints on the DM milli-charged model

Kovetz, VP++1807.11482

DM Millicharge: Viable Parameter Space

(T1) = —300mK
Planck 2015 constraints
SN1987A cooling
SLAC

Stellar (RG)

BBN

3% 1070

my [MeV]

A small part of the parameter space still survives!
€ =[10%,2*104]e, m = [0.2,30] GeV, f =[0.01%,0.4%]
nb: mpBBN < 0L,CMB at 2sigma ~ 0.5%wcdm

V. Poulin - JHU 37 RPM at LBNL-11/01/18




The future of 21cm 1s bright!

EDGES is the first of many experiments
o Global Signal: EDGES, SARAS2, PRIZM,

Murchlson Wldefleld Array
SQUARE KILOMETRE ARRAY -

HERA

B Hydrogen Epoéh of Reionization Arroy ‘

Even if CMB starts being exhausted, 21 cm will allow us to learn on astrophysics,
cosmology and dark matter properties!
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Conclusions

| have presented a (biased) overview of what Cosmology teaches us about DM.

We can perform both direct and indirect detection: constraints are competitive and/or
complementary to galactic searches.

We can constrain tiny fractions of decaying particles at many different epochs.

The EDGES 21cm signal could hold information on properties of (part of the) DM: the
CMB provides strong constraints on this scenario.

Even if EDGES signal is due to unknown systematic, 21cm (global and power
spectrum) will be a major probe for cosmology and DM in the future.

Thank 3014!
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