Probabilistic Cataloguing

Stephen K N PORTILLO with Benjamin C G LEE, Tansu DAYLAN and Douglas P FINKBEINER 29 September 2017 INPA Seminar

Outline

- Why use probabilistic cataloging?
- What is probabilistic cataloging?
- Application to faint source populations
- Application to crowded stellar fields
- Extending probabilistic cataloging to star + galaxy fields

Why use probabilistic cataloging?

Telescopes don't make catalogues!

Slide title stolen from Hogg and Lang, EAS Publication Series 45, 351 (2011) Image: SDSS DR 12

People make catalogues

						n hand and and
	RA (J2000)	DEC (J2000)	g	r		NGC 7006
	229.4351	2.010923	19.344	19.1	14	-[Fe/H]=-1.48 -
	229.4353	1.990166	23.070	21.4		
the second of the second se	229.4358	2.033374	21.809	21.2		
	229.4361	2.070269	20.107	19.7		*** A
and the second	229.4362	1.997957	22.894	21.3	1000	r · / 1
	229.4364	2.048578	22.386	21.6	16	- / -
	229.4366	2.053515	20.853	20.4		
	229.4369	2.103516	21.827	21.0		- 3. 1
	229.4369	2.043476	23.067	21.7		1 1 .
	229.4370	2.051732	19.960	19.6	10	
	229.4371	2.102266	20.813	20.3	- 10	
	229.4373	2.052342	20.785	20.3		
	229.4374	1.996688	21.161	20.6		- 1 P - 1 - 3
	229.4376	2.133210	22.476	21.6		
	229.4378	2.039289	20.883	20.4	20	
	229.4380	2.077996	22.682	21.8	~~	
	229.4380	2.043483	22.884	21.6		
	229.4381	2.045585	20.111	19.7		i de i
	229.4382	2.011463	22.069	21.3		-
	229.4382	2.029807	19.625	19.3	22	A /
	229.4382	2.030182	17.835	17.2		- 1/2/2/
	229.4385	2.157053	22.193	21.8		htindud
	229.4385	2.147021	22.492	21.5		00 05 10 0
						a - r
						g - 1
				_		
		talag	1100	. ∟	- ~	
I images –	ca	ualog	ues	5 –	-s	
		\mathcal{O}				

Catalogue and color-magnitude diagram: An et al. ApJS 179, 328 (2008)

Faint Source Populations

increasing F_{min} , I_{iso} constant $\int I \ d\Omega$

finite counts infinite counts

Counting statistics introduce a point source detection threshold But even sources fainter than this threshold can affect image

Crowded Field Cataloguing

Data: SDSS DR12 Catalog: An et al. ApJS 179, 328 (2008)

Traditional Catalogue Issues

These issues will become more relevant as we build more sensitive ground-based telescopes

What is probabilistic cataloging?

Probabilistic Cataloguing

- Infer an *ensemble of catalogues*
- Reflects populations of faint sources that are compatible with the data, without overfitting

Probabilistic Cataloguing

- Infer an *ensemble of catalogues*
- Naturally handles deblending ambiguities and source-source covariance in crowded fields

Bayesian Framework

- Likelihood
 - Calculate the model image based on the catalogue
 - Compare the model image to the data and calculate likelihood
- Prior
 - Set priors for nuisance parameters like sky level
 - Set population distributions for source parameters
 - Set prior on the *number* of sources
 - Flat prior, no minimum flux: image will be overfit
 - Physical prior above some minimum flux
 - Parsimony prior to penalize unimportant sources

Transdimensional Proposals

• Birth

 Propose new source, drawing from prior population distributions

• Death

• Choose a source at random to remove

• Split

- Choose a source at random to split
- Split it into two, conserving flux and centre of flux and separate them according to some kick distribution

• Merge

- For all pairs, use the value of the kick distribution for their separation as weights
- Choose a pair using these weights and merge them, conserving flux and centre of mass

Application to faint source populations

Daylan, Portillo, & Finkbeiner, 2017, ApJ, 839, 4

Image: Fermi

Probabilistic Catalogue

Population Constraints

Flux and Colour Distributions

Comparison with Traditional Catalogue

Application to crowded stellar fields

Portillo, Lee, Daylan, & Finkbeiner, 2017, AJ, 154, 4

Traditional Catalogue

Compared to Hubble

Probabilistic Catalogue

Completeness

False Discovery Rate

Stacked Catalogue Ensemble

Condensed Catalogue

Completeness (Condensed Catalogue)

False Discovery Rate (Condensed Catalogue)

Extending probabilistic cataloging to star + galaxy fields

Image: Princeton/Hyper Suprime Cam Project

Bayesian Framework

- Likelihood
 - Calculate the model image based on the catalogue
 - Compare the model image to the data and calculate likelihood
- Prior
 - Set priors for nuisance parameters
 - Set population distributions for source parameters
 - Set prior on the number of sources
- Need to parameterize sources
- · Galaxies are often fit with Sérsic profiles

$$I(r; I_e, n, r_e) = I_e \exp\left(-b_n \left[\left(\frac{r}{r_e}\right)^{1/n} - 1\right]\right)$$

• Profile is approximate – most useful when detailed structure is not discernable

Transdimensional Proposals

- Birth
 - Star
 - Galaxy
- Death
 - Star
 - Galaxy
- Star \rightarrow Galaxy
- Galaxy \rightarrow Star

- Split
 - Star \rightarrow 2 Stars
 - Galaxy $\rightarrow 2$ Galaxies
 - Galaxy \rightarrow Galaxy + Star
- Merge
 - 2 Stars \rightarrow Star
 - 2 Galaxies \rightarrow Galaxy
 - Galaxy + Star $\boldsymbol{\rightarrow}$ Galaxy

Galaxy Model Images

- Calculating model image is the slowest part for stars – even more so for galaxies
- We sped up our point source model image calculation
- So approximate galaxy profiles with a collection of point sources?

Deblending Stars + Galaxies

Deblending Stars + Galaxies

Conclusion

- Traditional cataloguing loses information on faint source populations and does not capture deblending ambiguities and source-source covariance
- Probabilistic cataloguing infers an ensemble of catalogues and captures the information lost by traditional catalogues
- Probabilistic cataloguing performs better in crowded stellar fields than traditional cataloguing
- The problem of crowded field photometry will be very relevant in the LSST era
- We are working on speed improvements and extending the method to star + galaxy fields