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Experiment Collect Data Analysis

ML & Stat 

Automate discoveries

Scientist

Goal: Create a Scientific Assistant

▪ find anomalies, 

▪ interesting events

▪ scientific laws 

Recommend  

experiments 

to run

Recommend 

what to collect

Recommend 

how to analyze
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www.autonlab.org

Computer vision, 

Robotics

Astronomy
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Chemistry

Turbulences

Neuroscience

EEG, fMRI, MEG, …

machine learning 
applications

Microarray
ML in Agriculture

Drug Discovery



Why are we all here?



Curious



To solve these problems,
our main tool is always the same



Collect data & learn from data
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Difficult & Important

) We need Entropy, Dependence, and  Divergence 

estimators to do machine learning

 How random is the data?

• How large is its entropy?

 How large is the dependence among the instances?
Which variables are dependent, which ones are independent?

• How large is their mutual information?  

 How different are the distributions of the instances?

• How large is the divergence between the distributions? 

Basic questions about the data

The world is very complicated...

We have to understand complex relationships across the data.



Entropy, Mutual Information, Divergence

C. Shannon

A. Rényi

I. Csiszár

Fernandes & Gloor: Mutual information is critically dependent on 

prior assumptions: would the correct estimate of mutual 

information please identify itself?
BIOINFORMATICS  Vol. 26 no. 9 2010, pages 1135–1139
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 “Mutual information” query produces 325,000 hits on Google Scholar, and the 

first 10 papers have more than 30,065 citations. 

 Most of these papers are application papers, e.g. in feature selection, computer 

vision, medical image processing, image alignment, and data fusion. As we find 

better estimators, such applications can simply use them . 

 “Big Data” search on Google Scholar produces 181,000 hits, and the first 10 hits 

have 12,872 citations. 

 Similarly, the “Deep Learning” search produces 106,000 hits, and the first 10 

papers have 8,485 citations (as of May 28, 2017).

Developing efficient estimators for mutual information and related 

quantities is highly important in many applications. 



How should we estimate them? 

Naïve plug-in approach using density estimation

Density: nuisance parameter

Density estimation: difficult, curse of dimensionality!

 histogram

 kernel density estimation

 k-nearest neighbors [D. Loftsgaarden & C. Quesenberry. 1965.]

How can we estimate them directly, 
without estimating the density?

Using

Estimate Rényi entropy



Using

Estimate Rényi entropy

without density estimation

ENTROPY ESTIMATION
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Rényi- entropy estimators using kNN graphs

Calculate:
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Using

Estimate divergence

RÉNYI DIVERGENCE ESTIMATION

without density estimation
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Distances / Divegences between 
Distributions



KL Divergence 



KL Divergence 



KL Divergence 



The Estimator
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Machine Learning 

on Complex Objects
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Traditional Machine Learning

Observations
Feature 

vectors

Training data 

of feature 

vectors

ML algorithm:

classification, 

regression, 

clustering, etc
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Finance

Complex Data is Everywhere

Neuroscience

Cosmology Images
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Diffusion Weighted Imaging



Dealing with complex objects
 break into smaller parts, represent the input as a set of smaller parts

 treat the set elements as sample points from some unknown distribution

 do ML on these unknown distributions represented by sets

Generalize ML to sets and distributions

Most machine learning algorithms operate on vectorial objects.

The world is complicated. Often 
• hand crafted vectorial features are not good enough

• natural to work with complex inputs directly (sets or distributions...)

 Each galaxy can be represented by a feature vector

Classify galaxy clusters

 Each cluster can be represented by a set of these vectors 

 We can’t concatenate the feature vectors into a huge vector



27 www.juhokim.com/projects.php

Cristiano RonaldoRio FerdinandOwen Hargreaves

Manchester United 07/08

Distributional Data
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ML on Distributions

blood pressure, 

heart rate, 

temperature, 

blood sample

…

Standard machine learning

Feature vector

Classifier

Healthy

Sick

Medical tests: 

healthy or sick?

What happens if we repeat the medical tests?

ML on sets/distributions

Set of feature vectors
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Distribution Regression / Classification 

Y1=1

P1

Y2=0

P2

?

Pm+1

Y3=1

P3

Ym=0

Pm…
The inputs are distributions, density functions (not vectors)

 We don’t know these distributions, only sample sets are available

(error in variables model)

Differences compared to standard methods on vectors



Support Vector Machines

Class 1
Class 2

Margin

Data:
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The Primal Hard SVM

This is a QP problem (m-dimensional)  
(Quadratic cost function, linear constraints)
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The Dual Hard SVM

Quadratic Programming (n-dimensional)

Lemma
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Distribution Classification

Problems:

Solution: Use RKHS based SVM! 

Dual form of SVM:
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Calculate the Gram matrix



Kernel Estimation

Linear kernel:

Polynomial kernel:

Gaussian kernel:

Solution: make it symmetric, and project it to the cone of PSD matrices
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We already know how!



Object Classification
ETH-80 [Leibe and Schiele, 2003]

 BoW: 88.9%

 NPR: 90.1%  

8 categories, 400 images, each image is represented by 576 18 dim points

Póczos, Xiong, Sutherland, & Schneider, CVPR 2012
37

2-fold CV,16 runs



Outdoor Scenes Classification
[Oliva and Torralba, 2001]

 Best published: 91.57%
(Qin and Yung, ICMV 2010)

 NPR: 92.3%

coast

mountain country

forest

street

highway city

tall building

8 categories, 2688 images, 

each represented by 1815 53 dim points.

Póczos, Xiong, Sutherland, & Schneider, CVPR 2012 38

10 fold CV, 16 runs



8 categories, 1040 images, each represented by 295 to 1542 57 dim points.

Sport Events Classification
[Li and Fei Fei, 2007]

 Best published: 86.7%
(Zhang et al, CVPR 2011)

 NPR: 87.1%

Póczos, Xiong, Sutherland, & Schneider, CVPR 2012 392 fold CV, 16 runs

badminton bocce croquet polo sailingclimbing rowing snowboard



Detecting Anomalous Images
B. Póczos, L. Xiong & J. Schneider, UAI, 2011.

50 highway images

5 anomalies

2-dimensional sample set representation of images (128 dim SIFT ) 2 dim)

Anomaly score: divergences between the distributions of these sample sets
40



Detecting Anomalous Images
1 2 3 4 95 86 7 10

55545351 52 41
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Cosmology Applications
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Scientific Applications

o Find new “scientific laws” / do better prediction 

(e.g. in estimating the mass of galaxy clusters)

o Find interesting/anomalous objects in the sky

o Recommend experiments to find the parameters of Universe 

Image credit:  nasa.gov, Hubble Space Telescope
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Find new scientific laws in physics

Goal: Estimate dynamical mass of galaxy clusters.

Importance: Galaxy clusters are being the largest gravitationally bound systems 

in the Universe. Dynamical mass measurements are important to understand the 

behavior of dark matter and normal matter.

Difficulty: We can only measure the velocity of galaxies not the mass of their cluster.

Physicists estimate dynamical cluster mass from single velocity dispersion.

Our method: Estimate the cluster mass from the whole distribution of velocities 

rather than just a simple velocity distribution.
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Support Distribution Machines 

(SDM) Regressor

galaxy properties: 

line of sight velocity, 

plane of sky position

From a distribution, predict a scalar.

cluster 
log(mass)



47

Estimate dynamical mass of galaxy clusters

Michelle Ntampaka et al, A Machine Learning Approach for Dynamical Mass Measurements of 

Galaxy Clusters, APJ 2015
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Neural Networks
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Convolutional Neural Networks

(LeNet)
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Imagenet Challenge
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Self-driving Cars



52

Caption Generation
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Weak Lensing Challenge

CMU DeepLens
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CMU DeepLens: Deep Learning For Automatic

Image-based Galaxy-Galaxy Strong Lens 

Finding

Left (a): ResNet-16-32 unit, preserving the size and depth of the input.

Right (b): ResNet-32-64,/2 unit simultaneously increasing the depth of the 

output (from 32 channels to 64) and downsampling by a factor 2 its resolution
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Results
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Results
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Find the parameters of Universe
Given a distribution of particles, our goal is to 

predict the parameters of the simulated universe 



58 B. Póczos, L. Xiong & J. Schneider, UAI, 2011.

What are the most anomalous galaxy clusters?

The most anomalous galaxy cluster contains mostly

 star forming blue galaxies

 irregular galaxies

Sloan Digital Sky Survey (SDSS)

 continuum spectrum 

505 galaxy clusters  

(10-50 galaxies in each) 

7530 galaxies

Find interesting Galaxy Clusters

Blue galaxy Red galaxy

Credits: ESA, NASA  
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Generative Neural Networks
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Generating Realistic Galaxy Images
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Generative Neural Networks

For Art
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63 S. Ravanbakhsh, AAAI 2017 

Generating Realistic Galaxy Images
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Goal: predict the number of 

galaxies in a halo from a 

half dozen dark matter halo 

parameters

(#particles in a halo, velocity 

dispersion, max circular 

velocity, half mass radius,…)

data: Millenium simulation

395,832 halos

method: support vector 

regression

true number of galaxies

p
re
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te
d
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m
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 o

f 
g
al

ax
ie

s

[Xiaoying Xu, 2012]

Learning Relationships from 

Simulations
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Learning Relationships from Simulations
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Given a distribution of particles, our goal is to predict the  redshift value that 

the particles were observed in.  
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ML to Help Understanding Turbulences
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Turbulence Data Classification

Simulated fluid flow through time
(JHU Turbulence Research Group, Alex Szalay)

Positive (vortex) NegativeNegative

Velocity distributions

68

find interesting events, patterns, phenomenaGoal: find vortices!

Results: Leave one out cross-validation : 97%
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Find Interesting Phenomena in Turbulence Data

Anomaly scores

Anomaly detection 
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Finding Vortices

Classification probabilities
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Agriculture 
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Agriculture  

Recommend 

experiments (which 

plants to cross) to 

sorghum breeders.
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Surrogate robotic system in the field
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Surrogate robotic system in the field

The surrogate system collecting data at the TAMU field site. The carriage supports two boom assemblies each 

one of which carries a sensor pod. The carriage slides up and down on the column allowing full scanning of a 

plant.
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Surrogate robotic system in the field

The carriage/dual-boom assembly 

moves up and down the column at 

a constant scanning speed. At its 

highest travel point the assembly 

clears the canopy (right).
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Data collection with sensor pods

A sensor pod is deployed into a row and scans a plant 



77



78

Name Range RMSE error

Leaf angle* 75.94 3.30 (4.35%)

Leaf radiation angle* 120.66 4.34 (3.60%)

Leaf length* 35.00 0.87 (2.49%)

Leaf width [max] 3.61 0.27 (7.48%)

Leaf width [average] 2.99 0.21 (7.o2%)

Leaf area* 133.45 8.11 (6.08%)
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FuSSO = Functional Shrinkage and Selection 

Operator

(Functional Lasso)
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When the number of functional input covariates may be very large, a 

sparse model that depends only on a few of the functional covariates may 

be preferred:

Sparse Functions-to-Real regression

Goal: Finds a sparse set of functional 

input covariates to predict a real-valued 

response.
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…

AgeVoxels’ ODFs

Inputs: Functions at each voxel (e.g. orientation distribution functions) 

Output: The age of the subject

FuSSO Applications in Neuroimaging

Image credit: http://bmia.bmt.tue.nl/software/viste/
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Results: Neuroimaging dataset

Ages

Example 

Voxel ODF

 Dataset with over 25K functions per subject for 89 total subjects 

(18 to 60 years old)

 Orientation distribution functions (ODF) at white matter voxels

 Goal: Predict the subject's age, given ODFs 

 We compared to LASSO with peak ODF (quantitative anisotropy, QA) 

values. Finite dim non-functional data set.

Image Sources: http://www.aging2.com/wp-content/uploads/2013/05/Screen-Shot-2013-05-28-at-9.48.49-PM.png; 

http://media.salon.com/2013/02/money1.jpg; http://3278as3udzze1hdk0f2th5nf18c1.wpengine.netdna-cdn.com/wp-

content/uploads/2010/10/connectome-brain-diffusion-spectrum-imaging.jpg
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Selected Voxels

Results: Neuroimaging dataset

Method: FuSSO

(ODFs)

LASSO 

(QAs)

Mean 

Predict

MSE: 70.85 77.13 156.43

Results:

Mean error: 8.3 years, Naïve approach error: 12.5 years
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Active Learning &

Design Optimization
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parameter space 

Recommend experiments to find the true 

parameters of the universe

hypothetical

parameters, 

simulated

observations

hypothesis

test

true

parameters

real

universe

noisy 

observations

NASA

N
A

S
A

 /
 E

S
A

mathematical

model

Computation problem: How to search parameter space

g()

surrogate function

Solution: Learn a surrogate function and make 

experiment decisions using it
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Question:

Existing methods:

▪ MCMC – evaluate likelihood and then keep/reject sample using a test.

▪ ABC – ’Likelihood Free’, but sampling is also expensive.

▪ Nested Sampling, Kernel Bayes’ Rule

None of these are designed to be query efficient.
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Gaussian Processes
Main Idea

• Posterior estimation via regression.

• Actively select points based on current observations.

GP
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Prior vs Posterior GP
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Utility:
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We use supernovae data for inference on 3 cosmological parameters: Hubble Constant 

(H0 ∈ (60, 80), Dark Matter Fraction ΩM ∈ (0, 1) and Dark Energy Fraction ΩΛ ∈
(0, 1). 

The likelihood for the experiment is given by the Robertson– Walker metric which 

models the distance to a supernova given the parameters and the observed red-shift. 

The dataset is taken from Davis et al [2007].
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If you are interested, contact me! ☺

bapoczos@cs.cmu.edu, GHC-8231

Functional data and density 

functionals have so many 

applications!

Some results on 

regression/classification/anomaly 

detection/ Lasso

Lots of missing theoretical results:

Lower bounds, active learning
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Thanks for your attention! ☺


