

Large Scale Structure Beyond the

Two-Point Function

Oliver Philcox (Princeton / IAS)

BCCP Cosmology Seminar 9/21/21

THE LATE UNIVERSE IS NOT GAUSSIAN

- All information contained in the power spectrum
- **No** higher order statistics needed!

z = 0

$$\delta(\mathbf{k}) \not\sim \mathcal{N}\left(0, P_L(\mathbf{k})\right)$$

- Not all information contained in the power spectrum
- > Higher-order statistics needed!

NON-GAUSSIAN DENSITY \Rightarrow NON-GAUSSIAN STATISTICS

Gaussian

- 1. Power Spectrum:
- $P(\mathbf{k}_1) = \langle \delta(\mathbf{k}_1) \delta(\mathbf{k}_2) \rangle'$
- 2. 2-Point Correlation Function:

$$\xi(\mathbf{r}_1) \equiv \langle \delta(\mathbf{x}) \delta(\mathbf{x} + \mathbf{r}_1) \rangle$$

Non-Gaussian

1. Bispectrum:

$$B(\mathbf{k}_1,\mathbf{k}_2) = \langle \delta(\mathbf{k}_1)\delta(\mathbf{k}_2)\delta(\mathbf{k}_3) \rangle'$$

2. 3-Point Correlation Function:

$$\zeta_3(\mathbf{r}_1, \mathbf{r}_2) \equiv \langle \delta(\mathbf{x}) \delta(\mathbf{x} + \mathbf{r}_1) \delta(\mathbf{x} + \mathbf{r}_2) \rangle$$

And beyond...

$$B_g(\mathbf{k}_1, \mathbf{k}_2) = \left[2b_1^3 F_2(\mathbf{k}_1, \mathbf{k}_2) + b_2 b_1^2 + 2b_{s^2} b_1^2 \left(\hat{\mathbf{k}}_1 \cdot \hat{\mathbf{k}}_2 - 1/3 \right) \right] P_L(k_1) P_L(k_2) + 2 \text{ perms.}$$

The galaxy bispectrum depends on galaxy formation physics, gravity, and early-Universe cosmology.

 \triangleright To obtain **all** the large-scale information in the initial conditions, we need: *

- Power Spectra / 2-Point Functions
- Bispectra / 3-Point Functions
- Trispectra / 4-Point Functions
- etc.

$$\sim P_L(k)$$

$$\sim P_L^2(k)$$

$$\sim P_L^3(k)$$

*ignoring initial condition reconstruction

THE CURRENT STATE OF PLAY

Only the galaxy **power spectrum** is analyzed

Fit to $P_{g,\ell}(k)$ to a simple template searching for **wiggle positions** and **overall amplitudes**, *i.e.* $[\alpha_{\parallel}, \alpha_{\perp}, f \sigma_8]$

▷ 3- and 4-point functions ignored

With a few exceptions...

[e.g. lvanov+19,20, d'Amico+19,20, Philcox+20, Gil-Marin+15,16]

5

MORE STATISTICS = MORE INFORMATION

- **Break** parameter **degeneracies**!
- [e.g. $P_g \sim b_1^2 \sigma_8^2$, $B_g \sim b_1^3 \sigma_8^4$]
- Sharpen cosmological constraints!

Euclid Forecast [perturbative]

 \triangleright Bispectrum improves constraints by pprox 40%

 $\triangleright 1\sigma$ constraint of $\sigma_{M_{\nu}} = 0.013 \text{ eV}$ [including Planck]

MORE STATISTICS = MORE INFORMATION

7

Break parameter degeneracies!
 [e.g. P_g ~ b₁²σ₈², B_g ~ b₁³σ₈⁴]
 Sharpen cosmological constraints!

Simulation-Based Forecast

 \triangleright Bispectrum improves constraints by > 2 imes

 \triangleright Neutrino constraint improves by 5imes

*Marginalizing over HODs, with
$$k_{\rm max} = 0.5 h {\rm ~Mpc^{-1}}$$
.

NON-GAUSSIAN INFLATION

Are the primordial perturbations **Gaussian** and **adiabatic**?

Standard Model of Inflation:

 \triangleright Scalar field ϕ rolling down a potential $V(\phi)$

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2}R - \frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi - V(\phi) \right]$$

Gravity Kinetic Energy Potential

> Action, S, encodes statistics of the primordial curvature perturbations, ζ

Second Order \Rightarrow Power Spectrum

$$S^{(2)} \Rightarrow P_{\zeta}(k) \approx A_s k^{n_s - 4}$$

Third Order \Rightarrow Bispectrum

$$S^{(3)} \Rightarrow B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2) \approx \frac{6}{5} f_{\mathrm{NL}} P_{\zeta}(k_1) P_{\zeta}(k_2) + 2 \text{ perms.}$$

Generates **non-Gaussianity** proportional to $f_{\rm NL}$

NON-GAUSSIAN INFLATION

$$B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2) \approx \frac{6}{5} f_{\mathrm{NL}} P_{\zeta}(k_1) P_{\zeta}(k_2) + 2 \text{ perms.}$$

The **consistency condition** states that

$$\lim_{k_1 \to 0} B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2) = (1 - n_s) P_{\zeta}(k_1) P_{\zeta}(k_2)$$

$$f_{\mathrm{NL}} \sim (1 - n_s) \ll 1 \quad \text{Non-Gaussianity is too}$$

$$f_{\mathrm{NL}} \sim (1 - n_s) \ll 1 \quad \text{small to be detected!}$$

Non-standard inflation can beat this, e.g.

- Multifield Inflation [Local Bispectrum]
- New Kinetic Terms [Equilateral Bispectrum]
- New Vacuum States [Folded Bispectrum]

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2}R - \frac{1}{2}\partial^{\mu}\phi \partial_{\mu}\phi - V(\phi) \right]$$

Planck 2018 IX

NON-GAUSSIAN INFLATION

How do we measure Primordial non-Gaussianity?

1. CMB Bispectrum

Planck TTT Bispectrum

 $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2) \approx \frac{6}{5} f_{\rm NL} P_{\zeta}(k_1) P_{\zeta}(k_2) + 2 \text{ perms.}$

f_{NL} Constraints

Local	6.7 ± 5.6
Equilateral	6 ± 66
Orthogonal	-38 ± 36

NON-GAUSSIAN INFLATION

 $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2) \approx \frac{6}{5} f_{\rm NL} P_{\zeta}(k_1) P_{\zeta}(k_2) + 2 \text{ perms.}$

How do we measure this?

1. CMB Bispectrum

2. Galaxy Power Spectrum

Desjacques & Seljak 10, eBOSS 21

NON-GAUSSIAN INFLATION

$B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2) \approx \frac{6}{5} f_{\mathrm{NL}} P_{\zeta}(k_1) P_{\zeta}(k_2) + 2 \text{ perms.}$

How do we measure this?

- CMB Bispectrum
- 2. **Galaxy Power Spectrum**

Galaxy Bispectrum 3.

CHERN-SIMONS INTERACTIONS VIOLATE PARITY

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2}R - \frac{1}{2}\partial^\mu \phi \partial_\mu \phi - V(\phi) - \frac{1}{4}f(\phi)F_{\mu\nu}F^{\mu\nu} + \frac{\gamma}{4}f(\phi)F_{\mu\nu}\tilde{F}^{\mu\nu} \right]$$

▷ Add a gauge field A_{μ} to the inflationary action, via $F_{\mu\nu} = \partial_{\nu}A_{\mu} - \partial_{\mu}A_{\nu}$

 \triangleright This can include a Chern-Simons coupling to the (pseudo-)scalar ϕ [motivated by baryogenesis]

 $ightarrow f(\phi)F_{\mu\nu}\tilde{F}^{\mu\nu}$ violates **parity symmetry** \Rightarrow parity-violating correlators!

Where should we look for these signatures?

THE 2PCF + 3PCF ARE NOT SENSITIVE TO PARITY*

2-Point Correlation Function (2PCF):

Parity Inversion = Rotation

*Except for the polarized CMB, and redshift-space effects

THE 2PCF + 3PCF ARE NOT SENSITIVE TO PARITY

2-Point Correlation Function (2PCF):

Parity Inversion = Rotation

3-Point Correlation Function (3PCF):

Parity Inversion = Rotation

*Except for the polarized CMB, and redshift-space effects

THE 2PCF + 3PCF ARE NOT SENSITIVE TO PARITY

2-Point Correlation Function (2PCF):

Parity Inversion = Rotation

3-Point Correlation Function (3PCF):

Parity Inversion = Rotation

4-Point Correlation Function (4PCF):

Parity Inversion \neq Rotation

$$\zeta_4(\mathbf{r}_1,\mathbf{r}_2,\mathbf{r}_3)$$

 $\mathbb{P}\left[\zeta_4(\mathbf{r}_1,\mathbf{r}_2,\mathbf{r}_3)\right]$

Use the 4PCF to search for Chern Simons terms!

*Except for the polarized CMB, and redshift-space effects

Shiraishi 16, Cahn+, Philcox+ (in prep.)

WHY USE HIGHER-ORDER STATISTICS?

- **Sharpen** parameter constraints!
- **Break** parameter **degeneracies**!

Test non-standard physics models!

Why Use Large Scale Structure?

- Signal-to-Noise $\sim k_{\rm max}^3$, unlike $\sim \ell_{\rm max}^2$ for CMB

- New physics constraints **don't** dilute with redshift

How Can We Use Higher-Order Statistics? [Fourier Space]

HOW TO MEASURE A BISPECTRUM

Problem: We don't measure the density field directly.

$$\delta_g(\mathbf{r}) \to W(\mathbf{r}) \delta_g(\mathbf{r}) \qquad \delta(\mathbf{k}) \to \int \frac{d\mathbf{p}}{(2\pi)^3} W(\mathbf{k} - \mathbf{p}) \delta(\mathbf{p})$$

Window Function

The measured bispectrum is a triple convolution

$$B_g(\mathbf{k}_1, \mathbf{k}_2) \to \int_{\mathbf{p}_1 \mathbf{p}_2} W(\mathbf{k}_1 - \mathbf{p}_1) W(\mathbf{k}_2 - \mathbf{p}_2) W(\mathbf{p}_1 + \mathbf{p}_2 - \mathbf{k}_1 - \mathbf{k}_2) B_g(\mathbf{p}_1, \mathbf{p}_2)$$

Solution: Convolve the theory model too

Survey Window Function

$$\hat{B}_g(k_1, k_2, k_3) = \int_{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3 \in \text{bins}} \delta_g(\mathbf{k}_1) \delta_g(\mathbf{k}_2) \delta_g(\mathbf{k}_3) (2\pi)^3 \delta_{\mathrm{D}} \left(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3\right) \qquad \text{BOS}$$

BOSS DR12, Low-z NGC Sugiyama+18, Philcox 21

CONVOLUTION IS EXPENSIVE

$$B_g^{\min}(\mathbf{k}_1, \mathbf{k}_2) = \int_{\mathbf{p}_1 \mathbf{p}_2} W(\mathbf{k}_1 - \mathbf{p}_1) W(\mathbf{k}_2 - \mathbf{p}_2) W(\mathbf{p}_1 + \mathbf{p}_2 - \mathbf{k}_1 - \mathbf{k}_2) B_g(\mathbf{p}_1, \mathbf{p}_2)$$

> Window convolution is too costly to do repeatedly!

Common approximation: apply the window **only** to the power spectrum

 $B_g(\mathbf{k}_1, \mathbf{k}_2) \supset P_L(k_1) P_L(k_2)$

But:

- This gives systematic shifts on large scales
- Spectra cannot be used to search for new physics!

BISPECTRA WITHOUT WINDOWS

New Approach

 \triangleright

Start from the **likelihood** for data **d**, using an Edgeworth expansion

$$L[\mathbf{d}](\mathbf{b}) = L_G[\mathbf{d}](\mathbf{b}) \left[1 + \frac{1}{3!} \mathsf{B}^{ijk} \left\{ \left[\mathsf{C}^{-1} \mathbf{d} \right]_i \left[\mathsf{C}^{-1} \mathbf{d} \right]_j \left[\mathsf{C}^{-1} \mathbf{d} \right]_k - \left(\mathsf{C}^{-1}_{ij} d_k + 2 \text{ perms.} \right) \right\} + \cdots \right]$$

Gaussian Piece Three-Point Function, $\mathsf{B}^{ijk} \equiv \langle d^i d^j d^k \rangle$ Covariance, $\mathsf{C}^{ij} = \langle d^i d^j \rangle$
This depends on survey geometry through C^{ij} and bispectrum through B^{ijk} $\nabla_{\mathbf{b}} \log L[\mathbf{d}](\mathbf{b}) = \mathbf{0}$

Optimize for true bispectrum, b:

$$\hat{b}_{\alpha}^{\mathrm{ML}} = \sum_{\beta} F_{\alpha\beta}^{-1,\mathrm{ML}} \hat{q}_{\beta}^{\mathrm{ML}},$$

$$\hat{q}_{\alpha}^{\mathrm{ML}} = \frac{1}{6} \mathsf{B}_{,\alpha}^{ijk} \left[\mathsf{C}^{-1} \mathbf{d} \right]_{i} \left(\left[\mathsf{C}^{-1} \mathbf{d} \right]_{j} \left[\mathsf{C}^{-1} \mathbf{d} \right]_{k} - 3\mathsf{C}_{jk}^{-1} \right)$$

Cubic Estimator

$$F^{\mathrm{ML}}_{\alpha\beta} = \frac{1}{6} \mathsf{B}^{ijk}_{,\alpha} \mathsf{B}^{lmn}_{,\beta} \mathsf{C}^{-1}_{il} \mathsf{C}^{-1}_{jm} \mathsf{C}^{-1}_{kn},$$

Fisher Matrix

21

BISPECTRA WITHOUT WINDOWS

Properties of the **cubic estimator**:

- 1. Unbiased
- 2. Minimum variance [as $B(k_1, k_2, k_3) \rightarrow 0$]
- 3. Window-free [effectively a deconvolution]

Requires various tricks for dealing with high-dimensional data [e.g. conjugate gradient descent, Monte Carlo estimation etc.]

TOWARDS A ROBUST BISPECTRUM ANALYSIS

Bispectrum Model Ingredients:

- ▷ Window Function
- Tree-Level Perturbation Theory
- Redshift-Space Distortions
- Alcock-Paczynski Effects
- Infrared Resummation
- Discreteness Effects

Theory model under development using high-resolution simulations

Applications:

- 1. Sharper constraints on cosmological parameters ($\approx 20\%$)
- 2. Primordial Non-Gaussianity Measurements, e.g. $\sigma_{f_{\rm NL}^{\rm eq}}\approx 500$

How Can We Use Higher-Order Statistics? [Real Space]

HOW TO MEASURE A CORRELATION FUNCTION

$$\hat{\zeta}_{g,4}(r_1, r_2, r_3, \hat{\mathbf{r}}_1 \cdot \hat{\mathbf{r}}_2, \hat{\mathbf{r}}_1 \cdot \hat{\mathbf{r}}_3, \hat{\mathbf{r}}_2 \cdot \hat{\mathbf{r}}_3) = \int \frac{d\mathbf{x}}{V} \int_{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3 \in \text{bins}} \delta_g(\mathbf{x}) \delta_g(\mathbf{x} + \mathbf{r}_1) \delta_g(\mathbf{x} + \mathbf{r}_2) \delta_g(\mathbf{x} + \mathbf{r}_3)$$

Measuring the 4PCF involves counting **quadruplets** of galaxies

Total number of quadruplets:

$$O(N_{gal}^4)$$

This is too many to count...

ONE TETRAHEDRON = THREE VECTORS

ONE TETRAHEDRON = THREE VECTORS

3 lengths + 3 multipoles $(r_1, r_2, r_3, \ell_1, \ell_2, \ell_3)$

1 length + 2 multipoles 1 length + 2 multipoles 1 length + 2 multipoles (r_1, ℓ_1, m_1) (r_2, ℓ_2, m_2) (r_3, ℓ_3, m_3)

ANGULAR MOMENTUM BASIS

Expand (isotropic) 4PCF in basis of isotropic functions

$$\zeta_4(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = \sum_{\ell_1 \ell_2 \ell_3} \zeta_{\ell_1 \ell_2 \ell_3}(r_1, r_2, r_3) \mathcal{P}_{\ell_1 \ell_2 \ell_3}(\hat{\mathbf{r}}_1, \hat{\mathbf{r}}_2, \hat{\mathbf{r}}_3)$$

$$\uparrow$$
Coefficients

Basis formed from **angular momentum addition** in 3D

$$\mathcal{P}_{\ell_1\ell_2\ell_3}(\hat{\mathbf{r}}_1,\hat{\mathbf{r}}_2,\hat{\mathbf{r}}_3) = \sum_{m_1m_2m_3} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix} Y^*_{\ell_1m_1}(\hat{\mathbf{r}}_1)Y^*_{\ell_2m_2}(\hat{\mathbf{r}}_2)Y^*_{\ell_3m_3}(\hat{\mathbf{r}}_3)$$

This is **separable** in \hat{r}_1 , \hat{r}_2 , \hat{r}_3

 \mathbf{r}_1

 \otimes

A SEPARABLE BASIS \Rightarrow A QUADRATIC ESTIMATOR

$$\hat{\zeta}_{\ell_1\ell_2\ell_3}(r_1, r_2, r_3) = \sum_{m_1m_2m_3} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix} \int d\mathbf{x} \,\delta_g(\mathbf{x}) \left[\int_{\mathbf{r}_1} \delta_g(\mathbf{x} + \mathbf{r}_1) Y_{\ell_1m_1}(\hat{\mathbf{r}}_1) \right] \left[\int_{\mathbf{r}_2} \delta_g(\mathbf{x} + \mathbf{r}_2) Y_{\ell_2m_2}(\hat{\mathbf{r}}_2) \right] \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_4m_3}(\hat{\mathbf{r}}_3) \right] \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} +$$

The estimator **factorizes** into **independent** pieces

To compute the 4PCF: count pairs of galaxies

Total number of pairs: $O(N_{
m gal}^2)$

This can be computed!

ENCORE: ULTRA-FAST N-POINT FUNCTIONS

Public C++/CUDA code

Computes isotropic 2-, 3-, 4-, 5and 6-point correlation functions

Corrects for survey geometry

Requires ~ 10 CPU-hours to compute 4PCF of current data

oliverphilcox/ encore

encore: Efficient isotropic 2-, 3-, 4-, 5- and 6-point correlation functions in C++ and CUDA

R	2	· 0	公 4	ę	1	0
	Contributors	Issues	St	ars	Fork	

oliverphilcox/encore

encore: Efficient isotropic 2-, 3-, 4-, 5- and 6-point correlation functions in C++ and CUDA - oliverphilcox/encore \oslash github.com

BEYOND THE 4-POINT FUNCTION

This generalizes **beyond** the 4PCF

▷ 5PCF, 6PCF, ...

> Anisotropic correlation functions

Non-Flat Universes

▷ Two, Three, Four, ... Dimensions

Real Space

Redshift Space

Requires the addition of N angular momenta in D dimensions [i.e. $\mathfrak{so}(D)$ Lie algebra]

MEASURING THE 4-POINT FUNCTION

 \triangleright Compute the connected 4PCF from ~ 10^6 BOSS CMASS galaxies

> Must remove **Gaussian** contribution 4PCF at the estimator level:

$$\zeta_{g,4}^{(c)} \sim \langle \delta_g \delta_g \delta_g \delta_g \rangle - [\langle \delta_g \delta_g \rangle \langle \delta_g \delta_g \rangle + 2 \text{ perms.}]$$

Do we detect a signal?

Philcox+21

CAN WE DETECT THE GRAVITATIONAL 4PCF?

> Perform a χ^2 -test to search for a gravitational 4PCF

> Null Hypothesis: 4PCF = 0.

Strong detection of non-Gaussianity!

> Most information is on short scales: 5σ detection for $r > 14h^{-1}$ Mpc

Philcox + 21

EXTRACTING INFORMATION FROM THE 4PCF

In configuration space, **windows** are easy, but **perturbation theory** is hard

Formulate theory in Fourier-space then FT

$$\zeta_{g,4}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = \int_{\mathbf{k}_1 \mathbf{k}_2 \mathbf{k}_3} e^{i(\mathbf{k}_1 \cdot \mathbf{r}_1 + \mathbf{k}_2 \cdot \mathbf{r}_2 + \mathbf{k}_3 \cdot \mathbf{r}_3)} T_{g,4}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$$

Requires many coupled integrals, even at tree-level

Example: Chern-Simons 4PCF

$$\zeta_4(\mathbf{r}_1,\mathbf{r}_2,\mathbf{r}_3) - \mathbb{P}[\zeta_4(\mathbf{r}_1,\mathbf{r}_2,\mathbf{r}_3)]$$

Shiraishi 2016, Cahn+, Philcox+, (in prep.)

crXiv 2012.09389 2105.08722 2106.10278 2107.06287 2108.01670

Contact ap2@cantab.ac @oliver_philcox

CONCLUSIONS

- O Non-Gaussian statistics:
 - 1. Sharpen cosmological constraints
- 2. Probe **new physics** in the early Universe, e.g. $f_{\rm NL}$, Chern-Simons couplings

- New methods allow statistics to be used in practice:
 - **Bispectra** computed without **windows**
- 2. Correlation functions compute at $O(N_{gal}^2)$