

Constraining cosmological models using LSS & BAO Observations

Will Percival University of Portsmouth

UC Berkeley seminar, May 20th 2008

outline

- Introduction to large-scale structure analyses
- Measure Ω_M h from relative clustering strength on large and small scales
 - problems with galaxy bias
 - possible resolution?
- Baryon Acoustic Oscillations
 - why these are more robust to galaxy bias
 - background
 - a recent study of the SDSS galaxies
- Future surveys

Galaxy clustering

Beyond 2-pt statistics

2-pt statistics complete for Gaussian random field, but no phase information

Same 2pt, different 3pt

The 2dF Galaxy Redshift Survey

- collaboration of 30 astronomers split between Australia and the UK
- survey is now complete and has measured redshifts for 220000 galaxies in the local Universe (b-band selection)
- data has been released (team disbanded 2005)

The Sloan Digital Sky Survey

- collaboration of over 200 scientists in 14 institutions
- survey will measure redshifts for 1000000 galaxies in the local Universe (r-band selection)
- also observed ~60000 luminous red galaxies out to higher redshift
- all data now taken. Currently waiting for final data release (October 2008)

Measuring $\Omega_{m}h$ from the power spectrum shape

The shape of the power spectrum

The power spectrum turn-over

During radiation domination, pressure support means that small perturbations cannot collapse.

> → Can measure $Ω_M$ h from shape of power spectrum

Galaxy bias : red galaxies

Galaxy bias: blue galaxies

Problem: galaxy bias

Galaxies not expected to form a Poisson sampling of the matter field

Angulo et al., 2007, MNRAS, astro-ph/0702543

Bias in this context means relation between $P(k)_{lin} \& P(k)_{obs}$

shot noise change (Seljak 2001)

$$P(k)_{\text{obs}} = b^2 P(k)_{\text{lin}} + A$$

Quadratic (Seo & Eisenstein 2005)

$$P(k)_{\rm obs} = b^2 P(k)_{\rm lin} + A_0 + A_1 k + A_2 k^2$$

Q model (Cole 2005)

$$P(k)_{\rm obs} = b^2 P(k)_{\rm lin} \frac{1 + Qk^2}{1 + Ak}$$

We really want a full model for galaxy formation

see review by Smith et al. 2007, astro-ph/0609547

1 + 012

power spectrum shape constraints

latest SDSS results from the shape of P(k)

- Quadratic estimator
- Used Q model for galaxy bias
- Fingers-of-God compression using assumed halo size
- Primary signal from shape of power spectrum (weak signal form baryons)

Tegmark et al. 2006, astro-ph/0608632

SDSS results from the shape of P(k)

- Possible 2nd order effects associated with this sort of analysis
 - Fingers-of-God compression
 - Bias model

Tegmark et al. 2006, astro-ph/0608632

Constraining dark energy using Baryon Acoustic Oscillations

Baryon Acoustic Oscillations (BAO)

To first approximation, BAO wavelength is determined by the comoving sound horizon at recombination

$$k_{
m bao} = 2\pi/s$$

 $s = rac{1}{H_0\Omega_m^{1/2}} \int_0^{a_*} da rac{c_s}{(a+a_{
m eq})^{1/2}}$

comoving sound horizon ~110h⁻¹Mpc, BAO wavelength 0.06hMpc⁻¹

Relationship between CMB and LSS power spectra

 $\Omega_{\rm m} = 0.3, \ \Omega_{\rm v} = 0.7, \ {\rm h} = 0.7, \ \Omega_{\rm b} {\rm h}^2 = 0.02$

Using BAO to measure cosmic acceleration

Idea described in: Blake & Glazebrook 2003, ApJ, 594, 665 Seo & Eisenstein 2003, ApJ 598, 720

Need sharp features in P(k) or correlations to change BAO position

Eisenstein, Seo & White 2006, astro-ph/0604361 Percival et al. 2007, astro-ph/0705.3323

BAO as a standard ruler

BAO measurements linked to physical BAO scale through:

Radial direction

Angular direction

 $(1+z)D_A\Delta\theta$

Hu & Haiman 2003, PRD, 68, 3004

BAO as a function of angle

Okumura et al (2007), astro-ph/0711.3640

Averaging over all pairs

BAO measurements linked to physical BAO scale through:

Radial direction

Angular direction

 $(1+z)D_A\Delta\theta$

To first order, random pairs depend on

$$D_V = \left[(1+z)^2 D_A^2(z) \frac{cz}{H(z)} \right]^{1/3}$$

Observed BAO position therefore constrains some multiple of

2dFGRS: the wiggles that weren't

fraction

Percival et al. 2001, MNRAS, 327, 1297

2dFGRS: the wiggles that were

Cole, Percival et al. 2005, MNRAS, 362, 505

SDSS LRG Correlation Function analysis

Again, CDM models fit the correlation function adequately well (although peak height is slightly too large) with (assuming $n_s=1$, h=0.72)

assuming $W_b h^2 = 0.024$, $W_m h^2 = 0.133 \pm 0.011$, Giving $W_b / W_m = 0.18$

BAO from SDSS LRG with photo-z

SDSS photometric LRG sample: Blake et al 2007, MNRAS, 374, 1527 SDSS photometric LRG sample: Padmanabhan et al 2007, MNRAS, 378, 852

The SDSS DR5 sample

After various selection cuts, the DR5 sample gives 51251 LRGs and 462791 main galaxies

SDSS and 2dFGRS work undertaken with key members of both teams

The SDSS DR5 power spectrum

Matter density from SDSS BAO

Data from SDSS main galaxies + LRGs consistent with ΛCDM, giving

$$\Omega_M = 0.257^{+0.029}_{-0.024}$$

Percival et al., 2007, ApJ, 657, 51

BAO from the 2dFGRS + SDSS

BAO detected at z~0.2

BAO detected at z~0.35

BAO from combined sample

Percival et al., 2007, MNRAS, astro-ph/0705.3323

Fitting the distance-redshift relation

Parameterize $D_V(z)$ by spline fit with nodes at z=0.2 and z=0.35

distance-redshift model applied individually to all galaxies

Distance-scale constraints

 $r_s/D_V(0.2) = 0.1978 \pm 0.0069$ $r_s/D_V(0.35) = 0.1095 \pm 0.0040$ corrrelation coefficient = 0.50

BAO distance scale measurements

including $r_s/d_A(\text{cmb})=0.0104$,

 $D_V(0.2)/d_A(cmb) = 0.0525\pm0.0016$ $D_V(0.35)/d_A(cmb) = 0.0951\pm0.0029$

 $r_s/D_V(0.2) = 0.1980 \pm 0.0060$ $r_s/D_V(0.35) = 0.1094 \pm 0.0033$

 $D_V(0.35)/D_V(0.2) = 1.812 \pm 0.060$

Cosmological constraints

Cosmological constraints with SNLS data

•Consider two simple models: –Lambda-CDM –Flat, constant w

$$\Omega_{
m m} = 0.249 \pm 0.018$$

 $w = -1.004 \pm 0.089$

Discrepancy with ACDM?

LRG BAO on too small scales: further away than expected, so more acceleration between z=0.2 and 0.35

Distance ratio found is $D_V(0.35)/D_V(0.2) = 1.812 \pm 0.060$

CDM expects $D_V(0.35)/D_V(0.2) = 1.67$

Discrepancy is 2.4σ

not 2dFGRS vs SDSS issue

Same discrepancy seen in just the SDSS data

not simple damping of the BAO

Observed BAO

$$\frac{P(k)_{\text{obs}}}{\bar{P}(k)_{\text{obs}}} = g(k)B_{\text{lin}} + [1 - g(k)]$$

Damping factor

$$g(k) = rac{b^2(k)ar{P}(k)_{
m lin}}{ar{P}(k)_{
m obs}}$$

- extreme bad luck (at 2.4σ, 2% level)
 errors are underestimated?
- damping model for BAO is not sophisticated enough
 - correlations between scales?
 - shift in scale (but simulations show <1% in distance)?</p>
- BAO/power spectrum modeling biased
- data/analysis flawed in a way that evades tests done to date (unknown unknown?)
- simple ACDM model is wrong
- some combination of the above

Present/Future BAO Surveys

- SDSS-II (present 2008)
 800,000 z<0.5 spectra over 9000deg²
- Wiggle-Z (present 2010) - 400,000 z~0.75 spectra over 1000deg²
- Baryon Oscillation Spectroscopic Survey (BOSS: 2009-2014)
 - 1,500,000 z~0.6 spectra over 10,000deg²+QSOs
- Dark Energy Survey (DES: 2010-2015)

 5000deg² multi-colour imaging survey on Blanco 4m + VISTA
 photo-z for 300,000,000 galaxies
- Plus: VST-Atlas, WFMOS, SKA, ADEPT, HETDEX, LAMOST, LSST, Pan-STARRS, PAU, SPACE/DUNE, + other MOS plans?

Predicted Dark Energy Constraints

DETF Figure-of-merit is area of 1σ confidence region for 2-parameter DE model, with equation of state:

$$egin{array}{rcl} w(z) &=& w_0 + (1-a)w_a \ &=& w_p + w_a(a_p-a) \end{array}$$

Survey	DETF figure of merit
Current + Planck	53.7
+ BOSS (1 year)	79.7
+ BOSS (5 year)	109.9
+ DES (BAO only)	75.1
+ Wiggle-Z	71.5

conclusions

- Geometric nature of BAO test is appealing
- Complementary to SN1a
- Detections
 - from spectroscopic samples (2dFGRS & SDSS)
 - from photometric samples (SDSS)
 - as a function of angular position (SDSS)
 - at different redshifts (SDSS)
- Data require acceleration, and are approximately consistent with ΛCDM
- However, there is an (as yet) unexplained 2.4σ offset from Λ CDM (with Sn1a constraints) when comparing BAO at z=0.2 and z=0.35
- future surveys will give % level distance constraints at many redshifts