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Talk outline
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1. Overview of cosmology from Lyaf
2. Study into neutrino mass effects on Lyaf
3. Emulating the Lyaf using Gaussian processes 
4. Ongoing work & outlook



Ly𝛼 forest
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● Absorption features in the spectra of 
z>2 quasars, caused by the presence 
of neutral hydrogen

● Tracer of the matter distribution at 
5>z>2, before the onset of dark 
energy

Figure credit William C Keel



Ly𝛼 forest observations

● SDSS/BOSS/eBOSS observed ~200,000 

quasar spectra

● Complemented by smaller numbers of 

higher resolution spectra 

(KECK/UV-HIRES/XShooter)

● DESI will provide ~700,000 new Lya 

quasar observations over coming years

● Theoretical development necessary to 

interpret these coming observations
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Slosar et al. 2011, 1104.5244.



Two categories of analysis
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3D correlation function:
● Correlations of flux absorption between 

different spectra

● Sensitive to matter clustering in the linear 
regime, on ~100 Mpc/h scales

● Has been used to measure the BAO scale at 
z~2.3

du Mas des Bourboux et al. 2020, 2007.08995
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z~2.3
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1D flux power spectrum (P1D):
● Correlations in flux absorption along the line 

of sight of each spectrum

● Sensitive to the clustering of matter on small 
(mildly non-linear) scales around ~1-10Mpc

● How to extract cosmological information from 
P1D measurements?

Chabanier et al. 2019, 1812.03554



Why do P1D analysis? Small scale information!
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Chabanier et al. 2019, 1905.08103

1911.09596

● P1D provides unique small-scale clustering 
information

● Valuable in constraining parameters that 
affect overall shape of the matter power 
spectrum (e.g. neutrino mass, slope + 
running of the primordial power spectrum)



Massive neutrinos and the Lyman-𝛼 forest
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Pedersen et al. (2020), JCAP04(2020)025:

Study the effect of massive neutrinos in
● Linear theory
● Non-linear matter power spectrum
● 1D Lyaf flux power spectrum



Neutrino mass in linear theory

10

Effect of 0.3eV massive 
neutrinos on the linear 
matter power spectrum



Neutrino mass in linear theory
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Effect of 0.3eV massive 
neutrinos on the linear 
matter power spectrum

~8% suppression in the 
z=3 small scale linear 
power spectrum, when 
CDM density is kept fixed



Modelling difficulties
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● The Lyman-𝛼 forest is sensitive to mildly 
non-linear clustering, and the state of the 
intergalactic medium (IGM)

● Modelling these effects simultaneously 
requires computationally expensive 
hydrodynamical simulations (i.e. Gadget, 
MP-Gadget, Nyx)
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Studying parameter degeneracies
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Studying parameter degeneracies

● Changed As by 8% in rescaled simulation 
to mimic massive neutrinos

● Degeneracy predicted by linear theory 
carries over into the non-linear regime

● If the linear power is the same, the 
non-linearities are the same
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1D flux power spectra
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● Effect of 0.3eV massive neutrinos on 
the 1D flux power spectrum



1D flux power spectra
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● Effect of 0.3eV massive neutrinos on 
the 1D flux power spectrum

● When rescaling As to match the 
linear power spectrum, the P1D 
agrees to sub-percent in the BOSS 
regime



Emulating the Lyman-𝛼 forest
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Pedersen et al. (2021), JCAP05(2021)033:

Constructing a Gaussian process emulator for the 1D 
flux power spectrum



The need for emulators

● Due to computational cost, only a small 

number (<100) of simulations can be run

● Far fewer than the ~105 likelihood 

evaluations required to obtain robust 

statistical constraints

● Recent work has demonstrated the 

benefits of using Gaussian processes to 

solve this problem (Bird et al. 2019, 

Rogers et al. 2019, Takhtaganov et al. 

2019)
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Borde et al. 2014, 1401.6472



Parameterising the P1D - two approaches

Linear matter power spectrum

● Universe is close to Einstein 

de-Sitter at 5>z>2

● 10% change in H0 -> 1% change 

in H(z=3)

● Cosmological information is 

concentrated in the linear 

power spectrum
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Cosmological parameters

● BOSS/eBOSS analysis models the 

P1D directly as a function of 

ΛCDM + extended parameters

● Degeneracies within 

ΛCDM+neutrinos

● Requires constructing an emulator 

for each ΛCDM extension
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Cosmological parameters

● BOSS/eBOSS analysis models the 

P1D directly as a function of 

ΛCDM + extended parameters

● Degeneracies within 

ΛCDM+neutrinos

● Requires constructing an emulator 

for each ΛCDM extension



Parameterising the P1D
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2 parameters to describe cosmology:

The slope and amplitude of the linear matter 

power spectrum at a small-scale pivot,  

k
p
=0.7 [1/Mpc]

4 parameters to describe the IGM

These are considered nuisance parameters 

in cosmological analysis



Parameterising the P1D
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● Randomly sample 100 points in 

the Planck chain.

● Plot the ratio of the z=3 linear 

matter power spectrum, with 

respect to the best fit 

cosmology
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● Take the same 100 chains, and 

rescale the slope and 

amplitude to match                           
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Parameterising the P1D
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● Randomly sample 100 points in 

the Planck chain.

● Plot the ratio of the z=3 linear 

matter power spectrum, with 

respect to the best fit 

cosmology

● Take the same 100 chains, and 

rescale the slope and 

amplitude to match                           

and 

● Repeat the process with free 

curvature parameter

● All variation within Ly𝛼f regime 

captured by 2 parameters



Constructing an emulator
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● Ran 30 hydrodynamical simulations in MP-Gadget, 9 snapshots each - 270 

training points

● Trained a Gaussian process in the 6 dimensional parameter space - all training 

points in a single emulator

● Only varied the primordial power spectrum in the training set (fixed h=0.67)
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Verifying emulator predictions

● Drop a single simulation (i.e. 9 

training points) from the training 

set

● Compare emulator predictions with 

the truth in that simulation
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Verifying emulator predictions

● Drop a single simulation (i.e. 9 

training points) from the training 

set

● Compare emulator predictions with 

the truth in that simulation

● Sub-percent accuracy at all redshifts

● eBOSS measurement uncertainties 

between 3-15%



Emulating external models
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Sub-percent accuracy in emulated P1D:
● in cosmologies with a different 

background evolution,
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● in cosmologies with a different 

background evolution,



Emulating external models
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Sub-percent accuracy in emulated P1D:
● in cosmologies with a different 

background evolution,

● and in massive neutrino 
cosmologies, without massive 
neutrinos in the training 
simulations.

● Expect the same argument to be 
applied to other extensions 
(curvature, running of spectral 
index)



Mock data constraints

32

h sim as mock data:
● Using the h=0.74 sim as mock data, 

run a sampler to constrain primordial 
power spectrum

● Using eBOSS as mock data covariance
● Marginalised over 8 IGM parameters
● Recover unbiased primordial power
● Largely insensitive to H0



Mock data constraints
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0.3eV neutrino sim as mock data:
● Still recover the correct values for 

the primordial power
● Strong degeneracy band between 

As and neutrino mass - consistent 
with previous work



Ongoing work - compressing the P1D
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● Early analysis (SDSS + WMAP) 
constrained the linear power from 
P1D, then combined these 
constraints with CMB

● Benefits - P1D information can be 
used by non-Lyaf experts

● How much information is lost in 
this compression at the level of 
current data?



Ongoing work - compressing the P1D
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● Are we sensitive to changes to the 
growth and expansion rate?

● Define parameters to allow for 
variation, and examine our 
sensitivity to them

● Defined at z=3



Ongoing work - compressing the P1D
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Ongoing work - compressing the P1D
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● Next step is to run a mock CMB + 
P1D analysis

● Compare constraints when using 
compressed vs uncompressed 
likelihoods



Outlook
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Much more work to do!
● 3D flux power spectrum analysis (both modelling and measurement) - 

contains more information

● Higher order statistics (bispectrum, or CMB lensing X Lya)

● Likelihood-free or field level inference



Extra slides below
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Extra slides - 1D and 3D flux power spectra
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● 3D flux power spectrum gaining 
increasing attention

● μ represents cosine of the angle 
between LoS and wavevector

● More information than the P1D 
(Font-Ribera et al. 2013)

● Not yet been measured from 
SDSS/eBOSS, but work in progress in 
preparation for DESI



Extra slides - 3D flux power spectra
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● Effect of 0.3eV massive neutrinos on 
the 3D flux power spectrum



Extra slides - 3D flux power spectra
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● Effect of 0.3eV massive neutrinos on 
the 3D flux power spectrum

● P3D also degenerate to <2.5% - 
features at high k caused by 
differences in IGM


