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Cost of a fixed 
amount of 
computation 
has dropped 
by 108 in the 
last 30 years 

Genel+ (14) 

Simulation size 
increasing 
exponentially 

(data courtesy V. Springel) 

Astrophysics is 
a dominant 
user of HPC! 



Gas accretion: classic virial shocking or 
cold flows and streams? 
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“no virial shock” 
(low halo mass) 
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Gas accretion: classic virial shocking or 
cold flows and streams? 

Rcool 

Rvir 

tcool short 
“no virial shock” 
(low halo mass) 

tcool long 
“stable virial shock” 

(high halo mass) 
Rcool 

Filamentary gas 
flows penetrate 
well within hot halo 
without shock 
heating. 
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Simulations identified a separate ‘cold mode’ accretion 
channel, whereby gas avoids shock heating to ~the 

virial temperature. 
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Keres+ (05) Brooks+ (09) 

Bimodal distribution of Tmax 
for smooth accretion. 

van de Voort+ (11) 

Transition point in halo mass from 
cold to hot mode dominated. 



In pictures. 

Keres+ (09) van de Voort+ (11) 

Dekel+ (09) 

Agertz+ (09) 

Dubois+ (12) 



I. Monte Carlo tracer particles 
        (or, how do we follow the flow?) 

II. Comparing to SPH 
           (or, have we gotten  it correct in the past?) 

III. Impact of feedback 
             (or, does more realistic physics change things?) 

IV. Zooms 
                (or, are we resolving the circumgalactic regime?) 

18 Genel+ (2013) 



Can easily follow the history of 
gas elements in SPH. 
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To determine the thermodynamic history of 
accreting gas, we need to follow individual 

fluid elements through time. 

Tracer particles are required in any 
grid-based code to follow a 

Lagrangian history. 



Typical solution: ‘velocity field’ tracers. 
vs. ‘Monte Carlo’ Tracer Particles 

Tracers are massless, passive 
particles advected using the same 
time integrator as hydro simulation. 

Have phase space coordinates 
(x,y,z,vx,vy,vz), velocities 

interpolated from the grid. 
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1D converging flow: velocity field tracers 
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Each hydro timestep is a sequence of three steps:  
Reconstruction -> Evolution -> Averaging 



Typical solution: ‘velocity field’ tracers. 
vs. ‘Monte Carlo’ Tracer Particles 

Tracers are massless, passive 
particles advected using the same 
time integrator as hydro simulation. 

Have phase space coordinates 
(x,y,z,vx,vy,vz), velocities 

interpolated from the grid. 
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Tracers are ‘unique tags’ which 
exist only as children of gas cells. 

Exchanged 
probabilistically 
between cells based 
explicitly on mass-fluxes. 



1D converging flow: Monte Carlo tracers 

23 



Gas 
trVEL 
trMC 
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In cosmological volumes, the problem manifests 
as a pile-up of tracers in the centers of halos. 



25 Nelson+ (2013) 

I. Monte Carlo tracer particles 
        (or, how do we follow the flow?) 

II. Comparing to SPH 
           (or, have we gotten  it correct in the past?) 

III. Impact of feedback 
             (or, does more realistic physics change things?) 

IV. Zooms 
                (or, are we resolving the circumgalactic regime?) 



Same initial conditions. 
Same gravity solver. 
Same implemented physics. 

GADGET (SPH) 
vs. 
AREPO (quasi-Lagrangian Moving Mesh) 

AMR (Eulerian) 

V. Springel 09 
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20/h Mpc box, WMAP-7 cosmology 
Radiative cooling + UVB (primordial H,He) 
Subgrid K-S type star formation recipe 
No stellar/AGN feedback (no winds/outflows) 



There are significant differences in the thermal 
history of gas accreted onto massive galaxies. 

(NEW) (OLD) 
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Relative importance of hot vs. cold accretion 
modes is strongly modified. 
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1. SPH does not dissipate 
subsonic turbulence correctly. 

Bauer+ 11 

2. SPH prevents proper 
mixing. 

Sijacki+ 12 

3. SPH suffers from artificial clumping. Torrey+ 12 

GADGET 

AREPO 

Eris Simulation 
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Significant differences in gas morphology and 
behavior within the halo. 

GADGET AREPO 

Radial Mass Flux 

Gas Temperature 
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Part II - Conclusions 

1. 
2.  With order of magnitude differences at z=2, hot 

mode accretion in AREPO is larger than in 
GADGET, while cold mode accretion is smaller.  

3.  Cold streams do not survive (cold) to the 
galaxy, but are instead heated/disrupted 
within the halo. 

Compared to an identical SPH simulation, 
the moving mesh run shows significant 
physical differences in the thermodynamic 
history of accreted gas. 
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The causes are purely numerical in origin. 4.  



33 Nelson+ (2014) 

I. Monte Carlo tracer particles 
        (or, how do we follow the flow?) 

II. Comparing to SPH 
           (or, have we gotten  it correct in the past?) 

III. Impact of feedback 
             (or, does more realistic physics change things?) 

IV. Zooms 
                (or, are we resolving the circumgalactic regime?) 



NO FEEDBACK vs. FEEDBACK 

• Stellar evolution: mass/metal return 
• Metal line cooling contributions 
• Chemical enrichment: H, He, C, N, 

O, Ne, Mg, Si, Fe 
• Stellar feedback: SNIa, SNII, AGB 
• Kinetic wind treatment -> galactic-

scale outflows 
• Black hole feedback (quasar/radio 

mode), nearby radiation effects 

“minimally comprehensive,  
standard state of the art” 

(Fiducial Illustris Model) 

• 20/h Mpc box 
• WMAP-7 cosmology 
• Radiative cooling + UVB 

heating (primordial H,He) 
• Subgrid K-S type star 

formation recipe 
• No stellar/AGN feedback 

(no winds/outflows) 

“simple physics” 
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“minimally comprehensive,  
standard state of the art” 

(Fiducial Illustris Model) 
NO FEEDBACK vs. FEEDBACK 
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Accretion rate of smooth, primordial gas suppressed by 
feedback for ~1011.5 halos, regardless of Tmax / Tvir. 
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1. “net”: (inflow-outflow). 
2. “primordial” only: (entering galaxy for the first time). 
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Cold winds reach to ~0.5 rvir with substantial influence, but 
gas inflow largely unaffected at the virial radius. 



Feedback boosts spherical covering fractions of outflow as 
well as outflow rates, strongly at 0.25 rvir, somewhat at 1.0 rvir. 
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The fractional contribution of smooth accretion is suppressed 
across all redshifts, and particularly so for Tmax / Tvir  material at z < 1. 

“smooth” “clumpy” 

“stripped” 

“recycled” 
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The presence of feedback increases the time taken by  gas 
to transit from the virial radius to the galaxy. 
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The presence of feedback increases the time taken by  gas 
to transit from the virial radius to the galaxy. 



The fraction of hot halo gas “eligible” to cool onto the galaxy 
also remains relatively flat from 1010 to 1012. 
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(NO FEEDBACK)  



(NO FEEDBACK)  

Birnboim & Dekel 03 

Analytic/1D stability of a virial shock 
(pressure vs. grav+radiative cooling) 
gives a “critical halo mass” of ~1011. 
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The fraction of hot halo gas “eligible” to cool onto the galaxy 
also remains relatively flat from 1010 to 1012. 



Some Conclusions 

1. 
2.  
3.  

Rate of smooth, primordial gas accretion 
suppressed by feedback for ~1011.5 halos (by 
~10 at z=2, increasing towards z=0). 

4.  

Spherical covering factor of inflowing gas at 
0.25 rvir decreases, while the rates of both 
inflow and outflow increase. 

The fractional contribution of smooth 
accretion is lower across all redshifts, and 
particularly so for Tmax / Tvir  material at z < 1. 

The “halo transit time” of smooth accretion 
increases, but neither it (nor the fraction of 
gas with tcool < tdyn) vary strongly with halo 
mass. 
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Part III - Conclusions 



45 Nelson+ (in prep) 

I. Monte Carlo tracer particles 
        (or, how do we follow the flow?) 

II. Comparing to SPH 
           (or, have we gotten  it correct in the past?) 

III. Impact of feedback 
             (or, does more realistic physics change things?) 

IV. Zooms 
                (or, are we resolving the circumgalactic regime?) 
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Gas flows connect from Mpc scales of large-scale structure 
through the halo and the ‘messy region’ to the disk. 
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Coherent flows 
can penetrate 
0.5 rvir, maintain 

over-density 
(and low 

entropy?) while 
heating. 

Orbiting 
substructures 

experience strong 
stripping. Mixing 

with CGM 
enhances cooling 
and fallback onto 

central. But: 
gravitational 

heating processes. 
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Variety of assembly histories affects how ‘quasi-static’ the hot 
halo gas is, and the spherical symmetry of the virial shock. 
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Characterizing the transition from IGM infall to virialized halo gas. 
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Lots of open questions we can address: 

1. Look at evolution of tracer entropy, what heating is due to shocks 
and what arises from the virial shock? 
• How does the virial shock form at high z? 
• How spherically symmetric is it (closed surface?) 

2. Does the interaction of filamentary inflow and quasi-static hot 
halo gas change as we better resolve the interface? 

3. Are the accretion rates of gas robust @ typical cosmological 
simulation resolutions (and balance of ‘hot’/’cold’) 

4. Orbiting substructures (“cosmological context”) 
• Energy input via gravitational heating processes vs. 
• Stripping, mixing and enrichment of the hot halo gas 

5. Angular momentum acquisition of the galaxy 
• Contribution from ~spherical hot halo cooling vs. streams 

6. Observational puzzles 
• E.g. metal-line absorption studies, prevalence of cold metal 

enriched gas in massive systems 



Some broad conclusions. 

1. The Monte Carlo tracer scheme as a robust way to trace the 
Lagrangian history of gas in cosmological simulations. 

2. Numerical (hydro) methods can significantly alter the scientific 
conclusions drawn in certain regimes – gas accretion and the 
circumgalactic regime being particularly difficult. 

3. The presence of strong stellar feedback sets up strong recycling 
motions in the inner halo. The accretion rate of smooth, primordial 
material is suppressed, although the morphology of inflow at the 
virial radius is largely unaffected. 

4. Focus on the formation of the hot halo and its interaction with 
filamentary inflow in higher resolution zoom simulations. 
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