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resolution elements

SUPERMUC usage in 2013 according to field
#Jobs CPU-time
% %
Astrophysics/Cosmology 8.9 28.2
Computational Fluid Dynamics 17.4 17.2
Biophysics/Bioclogy/Bioinformatics 10.2 14.6
Physics - High Energy Physics 7.0 11.2
Chemistry 18.2 8.0
Physics - others SN2 6.4
Engineering - others 2.3 6.3
Geophysies 8.3 3.0
Support/Benchmarking 9.0 Aol
Engineering - Electrical Engineering 0.9 1.4
Physics - Solid state Hoz 0.7
Informatics/Computer Sciences 10.3 0.6
Meteorology/Climatology/Oceanography 1.1 0.3
Engineering - Sturctural Mechanics 0.0 0.0
Medicine 0.1 0.0
Sum 100.0 100.0
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US $8.3 trillion
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Gas accretion: classic virial shocking or
cold flows and streams?

.o SHOIL
“no virial shock”
(low halo mass)

White & Frenk 91
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Gas accretion: classic virial shocking or
cold flows and streams?
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Gas accretion: classic virial shocking or
cold flows and streams?

Filamentary gas
flows penetrate
well within hot halo
without shock
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Accreted Gas Moss (10° Mg)

O = N W b
LARLARAL A RAALLARLEY RERARLARLY LARLALARES ShLL)

Simulations identified a separate ‘cold mode’ accretion
channel, whereby gas avoids shock heating to ~the
virial temperature.
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. Monte Carlo tracer particles

(or, how do we follow the flow?)




To determine the thermodynamic history of
accreting gas, we need to follow individual
fluid elements through time.
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time

Can eaisily follow the history of
gas elements in SPH.

c oV L
° Lagrangian history.




Typical solution: ‘velocity field’ tracers.

Tracers are massless, passive
particles advected using the same
time integrator as hydro simulation.

Have phase space coordinates
(X,Y,2,Vy,Vy,V,), Velocities
interpolated from the grid.




1D converging flow: velocity field tracers
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Each hydro timestep is a sequence of three steps:
Reconstruction -> Evolution -> Averaging




vs. ‘Monte Carlo’ Tracer Particles

Tracers are ‘unique tags’ which
exist only as children of gas cells.

mass flux

Exchanged Aux _ AM;

j I ——

probabilistically " M,
between cells based
explicitly on mass-fluxes.




1D converging flow: Monte Carlo tracers
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In cosmological volumes, the problem manifests
as a pile-up of tracers in the centers of halos.

Monte Carlo tracers Gas Velocity field tracers
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” Comparing to SPH

(or, have we gotten it correct in the past?)




;
GADGET (SPH) .:.°

VS

Same initial conditions.
Same gravity solver.
Same implemented physics.

vl

20/h Mpc box, WMAP-7 cosmology
Radiative cooling + UVB (primordial H,He)
Subgrid K-S type star formation recipe

No stellar/AGN feedback (no winds/outflows)

AMR (Eulerian)

AREPO (quasi-Lagrangian Moving Mesh)

Gas Elements DM Particles Vel Tracers

MC Tracers

Miarget /SPH [h

Mg mpwm [P1Mg] e [T kpc]

1283 1283 1 x 1283
2563 2563 1 x 2563
5123 5123 1 x 5123

10 x 1283
10 x 2563
10 x 5123

4.8 x 107 2.4 x 108 4.0
6.0 x 106 3.0 x 107 2.0
7.4 x 10° 3.7 x 106 1.0




There are significant differences in the thermal
history of gas accreted onto massive galaxies.
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Relative importance of hot vs. cold accretion
modes is strongly modified.
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Significant differences in gas morphology and
behavior within the halo.
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Part Il - Conclusions

Compared to an identical SPH simulation,
the moving mesh run shows significant
physical differences in the thermodynamic
history of accreted gas.

With order of magnitude differences at z=2, hot
mode accretion in AREPO is larger than in
GADGET, while cold mode accretion is smaller.

Cold streams do not survive (cold) to the
galaxy, but are instead heated/disrupted
within the halo.

The causes are purely numerical in origin.




”I . Impact of feedback

(or, does more realistic physics change things?)




NO FEEDBACK vs. FEEDBACK

(Fiducial lllustris Model)

“simple physics” “minimally comprehensive,
standard state of the art”

« 20/h Mpc box « Stellar evolution: mass/metal return

« WMAP-7 cosmology  Metal line cooling contributions

« Radiative cooling + UVB « Chemical enrichment: H, He, C, N,
O, Ne, Mq, Si, Fe

« Stellar feedback: SNIla, SNIl, AGB
* Kinetic wind treatment -> galactic-

heating (primordial H,He)

« Subgrid K-S type star
formation recipe
scale outflows

* No stgllar/AGN feedback Black hole feedback (quasar/radio
(no winds/outflows) mode), nearby radiation effects

Gas Elements DM Particles Vel Tracers ~ MC Tracers — myarget /SPH [h='Mg] mpm [~ 1Mg] e [h™! kpc]

1283 1283 1 x 1283 10 x 1283 4.8 x 107 2.4 x 108 4.0
2563 2563 1 x 2563 10 x 2563 6.0 x 106 3.0 x 107 2.0
5123 5123 1 x 5123 10 x 5123 7.4 x 10° 3.7 x 106 1.0




10000

1000 |

Nw

100}

10F
E —2
L Thw X Uy

lllustris n,, 1

1 . ! .
9 10 11

II\“thalca [ |Og lVlsun]

13

v,, [km/s]

FEEDBACK

(Fiducial lllustris Model)

“minimally comprehensive,
standard state of the art”

10000 ' T

1000k

100}

Vw = 3.704dm

lllustris v,, [km/s] 3

1 , 1 . \
9 10 11 12
II\"‘thalc: [log lVlsun]

13




Accretion rate of smooth, primordial gas suppressed by

~1011.5
feedback for ~10*!~ halos, regardless of T, ., / T,
Time [Gyr]
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Cold winds reach to ~0.5 r;,, with substantial influence, but
gas inflow largely unaffected at the virial radius.
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Feedback boosts spherical covering fractions of outflow as
well as outflow rates, strongly at 0.25r,,, somewhat at 1.0 r
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The fractional contribution of smooth accretion is suppressed

across all redshifts, and particularly so for T
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The presence of feedback increases the time taken by gas
to transit from the virial radius to the galaxy.
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The presence of feedback increases the time taken by gas
to transit from the virial radius to the galaxy.
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Gas Mass Fraction (., < tg,,)

The fraction of hot halo gas “eligible” to cool onto the galaxy
also remains relatively flat from 10° to 1012,

-9.0 | 95 | 10.0 ) 10.5_1I 11.0 | 115 | 12.0
Mrao [log " Msin]  (NO FEEDBACK)




Gas Mass Fraction (te, < tq,n)

The fraction of hot halo gas “eligible” to cool onto the galaxy
also remains relatively flat from 10'° to 10%2,
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Analytic/1D stability of a virial shock
(pressure vs. grav+radiative cooling) :
gives a “critical halo mass” of ~10'1, 2




Part lll - Conclusions

Rate of smooth, primordial gas accretion
suppressed by feedback for ~10115 halos (by
~10 at z=2, increasing towards z=0).

Spherical covering factor of inflowing gas at
0.25 r, decreases, while the rates of both
inflow and outflow increase.

The fractional contribution of smooth
accretion is lower across all redshifts, and
particularly so for T, / T,, material at z < 1.

The “halo transit time” of smooth accretion
iIncreases, but neither it (nor the fraction of

gas with t.,, < tg4,,) vary strongly with halo
mass.
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(or, are we resolving the circumgalactic regime?)




Res N';En NIF-,IaEt Mbaryon [M@l] mupnt [I\JQ] egsar'r:roving [pc] EEE\«? C] rmin C] rha.lo [kpc]

cell

Lo 5123 800,000 1.0 x 108 5.1 x 108 1430 480 31 2.7
L10 1024% 7,000,000 1.3 x 105 6.4 x 10° 715 240 11 1.6
L11 20483 64,000,000 1.6 x 104 8.0 x 10* 357 120 3.3 0.8
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Gas flows connect from Mpc scales of large-scale structure

through the halo and the ‘messy region’ to the disk.
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Coherent flows
can penetrate
0.5 r,,, maintain
over-density
(and low
entropy?) while
heating.

Orbiting
substructures
experience strong
stripping. Mixing
with CGM
enhances cooling
and fallback onto
central. But:
gravitational
heating processes.

109 ( Pgas / Pertp ) log S [K cm?]



Variety of assembly histories affects how ‘quasi-static’ the hot
halo gas is, and the spherical symmetry of the virial shock.
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Characterizing the transition from IGM infall to virialized halo gas.
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Lots of open questions we can address:

. Look at evolution of tracer entropy, what heating is due to shocks
and what arises from the virial shock?
« How does the virial shock form at high z?
 How spherically symmetric is it (closed surface?)
. Does the interaction of filamentary inflow and quasi-static hot
halo gas change as we better resolve the interface?
. Are the accretion rates of gas robust @ typical cosmological
simulation resolutions (and balance of ‘hot’/’cold’)
. Orbiting substructures (“cosmological context™)
 Energy input via gravitational heating processes vs.
e Stripping, mixing and enrichment of the hot halo gas
. Angular momentum acquisition of the galaxy
o Contribution from ~spherical hot halo cooling vs. streams
. Observational puzzles
 E.g. metal-line absorption studies, prevalence of cold metal
enriched gas in massive systems




Some broad conclusions.

. The Monte Carlo tracer scheme as a robust way to trace the
Lagrangian history of gas in cosmological simulations.

Numerical (hydro) methods can significantly alter the scientific
conclusions drawn in certain regimes — gas accretion and the
circumgalactic regime being particularly difficult.

. The presence of strong stellar feedback sets up strong recycling
motions in the inner halo. The accretion rate of smooth, primordial
material is suppressed, although the morphology of inflow at the
virial radius is largely unaffected.

. Focus on the formation of the hot halo and its interaction with
filamentary inflow in higher resolution zoom simulations.
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