Emerging from the Dark Ages
The Role of Baryons in Structure Formation
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The “Theory”: The history ot the Universe
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The Role of Baryons Outline
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o Linear and non linear behavior of structure
+ Baryon speed of sound and relative amplitude

+ The relative velocity of baryons compare to the
dark matters’ (the “stream velocity”)
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The Linear Regime: The Power Spectrum
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| egime: The Power Spectrum
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The Linear Regime: Baryon’s speed of sound

First order correction in linear perturbations theory:
Baryons’s speed of sound is spatially varying

Uniform cy(r)
Vs
spatially varying

Naoz & Barkana 2005
(see also Yamamoto et al. 1997, 1998)
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The Linear Regime: Baryon’s speed of sound

First order correction in linear perturbations theory:
Baryons’s speed of sound is spatially varying

O:why is it 1st order term?
A:

The motion equation for baryonic fluctuations:

8 e ) iy
op + 2H b, = §H§ 5 (fo0b + famdam) — —3Cs 25

since: 2=% -l (1_ dlogT)

s w dlog p
So:
3 s k? kgT
op+2H o, = §Ho2 (foop + fdm5dm)—a2 i (0 + O7)

Naoz & Barkana 2005
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None-Linear Regime: Baryon’s speed of sound
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Naoz, Yoshida, Barkana 2011
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The Linear Regime: The role of pressure

The Filtering mass: 1
—

QQ:What is the minimum halo
mass at which baryon
overdensities can still grow?

A:Time averaging Jeans mass

v Baryons overdensties

are smooth compared to
the dark matter 0p#0dm
v Spatially varying speed

of sound cs(r)+const

Filter Mass [M...]

The new filtering
ERNS

2

Naoz & Barkana 2005,2007
Gnedin & Hui 1998
Gnedin 2000
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None- Linear Regime: The role of pressure

The Filtering mass: Vs The Characteristic mass: ';
QWWRAL IS the minimum halo mass that keeps most of Its baryons

(> 1/2 fv ) during formation?

sl [0 {1 + (2a/3 — 1) (%)a}

Gnedin & Hui 1998
Gnedin 2000
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None- Linear Regime: The role of pressure

- The Filtering mass: Vs The Characteristic mass: i
QWWRET IS the minimum halo mass keeps most of ItS'baryons

(> 1/2 fv ) during formation? { 0.18 ——7T—T—T—1—

Characteristic mass:

= Fid (Complete heating)
& co(r)=const

Q 5b:6dm
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Naoz, Yoshida, Barkana 2011 qu; no stream velocity (yet) 1+z
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None- Linear Regime: The role of pressure
+ heating

The Filtering mass: Vs The Characteristic mass: '3
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From Linear to Non-Linear

A ' d . 3 = . oy o . . v . - - -
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cs(r) +  Oam#Ob

x[nitial conditions are important ©

*The minimum gas-rich halo is highly sensitive
to the baryon ICs

*xUse linear theory to understand non-linear
behavior
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The Linear Regime: The Stream Velocity
Second order correction in linear perturbations theory:
Baryons’s peculiar velocity differ from the dark matter

at the time of recombination

|Vb-Vam | =30 km/sec at
Recombination time

scales as 1/a

104 10-* 1 102

| -1
'Naoz & Barkana 2055 [Mpe~']
Vb Z Vam (TSeliakhovich & Hirata 2010) B T ——
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The Linear Regime: The Stream Velocity
Second order correction in linear perturbations theory:
Baryons’s peculiar velocity differ from the dark matter

at the time of recombination

0.050 [£°/Q7*) 1P (k)
® |vb-vam|=30 km/secat " e 2
Recombination time
e scalesasi1/a o 0030
<
0.020 | :
| 7=40 -
0.015 | |

== 5000 - 5001000
. ; . k, Mpc™!
Vb Z Vam (Iseliakhovich & Hirata 2010) >
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The Linear Regime: The Stream Velocity

Second order correction in linear perturbations theory:

Q:Why only this term?
A: (Iseliakhovich & Hirata 2010) COWlpClr o

Ay Oocstas
avbc kéc VS ot 6C/H

: : (bg)
The ratio is: Yo *

aH
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The Linear Regime: The Stream Velocity
Second order correction in linear perturbations theory:
Baryons’s peculiar velocity differ from the dark matter

at the time of recombination

Nype(> M) — No(> M)
® No(> M) |

~0.40
—0.45
For more implications:
Dalal et al 2010, Stacy et al =z
2011, Maio et al 2011, Greif et
al 2011, Yoo et al 2011,
Fialkov et al 2011, Bittner &

Loeb 2011, Visbal et al :
2192 _0.650

~0.50 -
—0.55 -

~0.60 -

LoglO(M/Mm)
Tseliakhovich & Hirata 2010
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None-Linear Regime: The Stream Velocity

The effect of the stream velocity in cosmological simulations:
See also: Stacy et al 2011, Maio et al 2011, Greif et al 2011, Naoz et al 2012...

AREPO Zoom-in Nov, s % MH-2-NOREL

simulation starting at 7=19.58

7=99, sof=68pc A B

‘.

z=19.58

z=19.58

MH-2-REL

]O Vbe
z=15.65

ng = 10° cm™>

(;]"eifv et al 20]] Side Length: 10 kpc (comoving)

Wednesday, March 7, 12



None-Linear Regime: The Stream Velocity
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None-Linear Regime: The Stream Velocity
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None-Linear Regime: The Stream Velocity

Half empty of half full? Position shift
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Linear Regime, Stream Velocity and the Role of Pressure

The Filter ing mass. ; v Baryons overdensties are smooth
R —

Q:What is the minimum halo compared to the dark matter Op#Odm
mass at which baryon v Spatially varying speed of sound

overdensities can still grow? cs(r)xconst .
v Stream velocity
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None- Linear Regime, Stream Velocity

- The Filtering mass: Vs The Characteristic mass: i
Q: BT s the minimum halo mass thtkees most oOf Its baryons
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None- Linear Regime, Stream Velocity

- The Filtering mass: Vs The Characteristic mass: Vs The Cooling md”’}

IR NN LSRN

Redshift \ 1+2 .

Fialkov, et al 2011 2 Naoz, Yoshida & Gnedin 50] 2b in prep.
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The Role of Baryons
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-

o First order correction of the linear theory: cs(r) + Oam#Op at
time of recombination

* Effect the power spectrum: cs(r) =Const. = underestimate
the baryons, and the baryon temperature fluctuations.

* Role of pressure is only moderate, and gas can accumulate
on smaller halos

o Second order correction: vy # Vim

* Suppression of small mass halos + sterile halos
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