DLAs and Galaxy Formation

Ken Nagamine UC San Diego

Collaborators:

Art Wolfe (UCSD) L. Hernquist (Harvard) V. Springel (MPA)

KN+ 04a,b, 05a,b

What are the Goals?

- Self-consistent model of galaxy formation (disk & bulge) and BH formation
- How did gas transform into stars?
- A model consistent with low-z & high-z observations? (likewise, small - & large-scale)
- Does the hierarchical cold dark matter model work?

OUTLINE

- 1. What are DLAs? observations
- 2. Effects of SN feedback on:
 - **★** ΩHI, f(NHI)
 - **\star** DLA cross section, rate-of-incidence (dN/dz)
 - ★ physical size & # density
 - ★ mean DLA halo mass, DLA--LBG
 - ★ metallicity
 - ★ how are DLAs distributed in halos?
 - ★ implications on high-z SF
- 3. [CII] 158 micron emission

WHAT ARE DLAS?

Wolfe+ '86

 $N_{\rm HI} > 2 \times 10^{20} \, {\rm cm}^{-2}$

RATE-OF-INCIDENCE

$$dN_{\text{DLA}} = n_{\text{phys}}(M) dM \cdot \sigma_{\text{DLA}}^{\text{phys}} \cdot c dt$$

= $(1+z)^3 n_{\text{co}}(M) dM \cdot \sigma_{\text{DLA}}^{\text{phys}} \cdot a dr$
= $n_{\text{co}}(M) dM \cdot \sigma_{\text{DLA}}^{\text{co}} \cdot dr$,

$$\frac{dN}{dz} = n_{co}(M)dM \cdot \sigma_{DLA}^{co} \frac{dr}{dz}$$

'absorption distance' $dX \equiv \frac{H_0}{c} (1+z)^3 c dt = \frac{H_0}{c} (1+z)^2 dr$

$$\frac{\mathrm{d}N_{\mathrm{DLA}}}{\mathrm{d}X} = \frac{c}{H_0} n_{\mathrm{co}}(M) \, \mathrm{d}M \cdot \sigma_{\mathrm{DLA}}^{\mathrm{phys}}.$$

NEUTRAL GAS DENSITY

COSMOLOGICAL HYDRODYNAMIC SIMULATIONS

- model galaxy formation from first principles in a ΛCDM universe
- GADGET2 Smoothed Particle Hydrodynamics code radiative cooling/heating, star formation, SN & galactic wind feedback
 - LBGs@z=3-6, massive gal@z=1-2, DLAs, (KN+04ab, 05ab)

Table 2. Simulation Parameters						
Run	Boxsize	$N_{ m p}$	$m_{ m DM}$	$m_{ m gas}$	ϵ	wind
O3 P3 Q3 Q5	10.00 10.00 10.00 10.00	2×144^{3} 2×144^{3} 2×144^{3} 2×324^{3}	2.42×10^{7} 2.42×10^{7} 2.42×10^{7} 2.12×10^{6}	3.72×10^{6} 3.72×10^{6} 3.72×10^{6} 3.26×10^{5}	2.78 2.78 2.78 1.23	none weak strong strong
$[h^{-1} \text{Mpc}]$ $[h^{-1} M_{\odot}]$ $[h^{-1} \text{kpc}]$						

 $4.7 \times 10^{11} h^{-1} M_{\odot}$

$M_{\rm tot} = 2.6 \times 10^{10} h^{-1} M_{\odot} \quad 2.4 \times 10^9 h^{-1} M_{\odot} \quad 2.4 \times 10^8 h^{-1} M_{\odot}$

DLAs

DLAS IN COSMOLOGICAL SIMULATIONS

 $M_{\rm halo} = 2.6 \times 10^{10} \, h^{-1} M_{\odot}$

KN+ 2004a,b

STAR FORMATION MODEL

 $\delta > \delta_c$ (overdense) Four criteria $\nabla \cdot \vec{v} < 0$ (converging flow) for SF in a cell $m_{\rm gas} > m_{\rm Jeans}$ (Jeans unstable) $t_{\rm cool} < t_{\rm dyn}$ (cooling fast) $\Delta m_{\star} = c_{\star} \frac{m_{\rm gas}}{t_{\star}} \Delta t$ Each star ptcl is tagged w/ $\Delta E_{\rm SN} = \epsilon_{\rm SN} \Delta m_* c^2$ $(m_{\star}, t_{\rm form}, Z/Z_{\odot})$ $t_{\star} = \max(t_{\text{cool}}, t_{\text{dyn}})$

KN+ '04a

DLA CROSS SECTION

 $\sigma_{
m DLA} \propto M_{
m halo}^{lpha}$ $lpha \sim 1$

Stronger feedback suppresses σ_{DLA} for low mass halos

 $\alpha > 1$

KN+ '04a

DLA DISTRIBUTION

$$\frac{\mathrm{d}N_{\mathrm{DLA}}}{\mathrm{d}z\,\mathrm{d}\log M} = \frac{\mathrm{d}r}{\mathrm{d}z} \left[M\,n(M,z)\,\ln(10) \right] \sigma_{\mathrm{DLA}}^{\mathrm{co}}(M,z),$$

DLA--LBG CONNECTION

THE NEW PICTURE

FAINT GALAXIES IN UDF

~ 3 kpc @ z=3

No extended SF region detected at high-z.

Wolfe & Chen '06, in prep

DIFFERENT SF THRESHOLD AT HIGH-Z?

Wolfe & Chen '06, in prep

NUMBER DENSITY OF DLAS

More DLAs than LBGs down to RAB=30 mag if ADLA<5 kpc

Can we detect DLA gas directly?

WHY CII?

- Dominant coolant of MW
- Complementary to opt-IR (cf. Lyman break galaxies @ z~3)
- A new window for high-z SF using DLAs (Wolfe+ '03) $n\Lambda_{[CII]} \sim \frac{N(CII^*)}{N(HI)} hv_{21}A_{21}$

LOCAL OBS OF [CII]

Image: 5-8 micron ISOCAM

e.g. Madden+ '93 Malhotra+ '97, '01 Leech+ '99 Contoursi+ '02

MULTI-PHASE ISM MODEL

CNM MASS FRACTION

 $\rho_C V_C + \rho_W V_W = \rho_0 V_0$ (mass conservation) (CNM) (WNM)

 $V_C + V_W = V_0$ (volume conservation)

$$f_M \equiv \frac{\rho_C V_C}{\rho_0 V_0} \quad \text{(CNM mass fraction)}$$
$$= \frac{1 - (\rho_W / \rho_0)}{1 - (\rho_W / \rho_C)}$$

Given ρ_0 , ρ_C , ρ_W , $\longrightarrow f_M$

KN+ '06

PHASE DIAGRAM

Equilibrium: $\Gamma = n\Lambda$

CII luminosity per H atom (dotted line) $\ell_{C_{II}}$

CNM MASS VS. HALO MASS

Given ρ_0 , ψ_{\star} , *Z* from simuluation, and ρ_C , ρ_W from the model,

$$M_{\rm CNM} = \Sigma_i \ f_M \rho_0 V_0$$

Semi-analytic model of Mo, Mao, White (1998): disk mass fraction = 0.05

Simulation suggests lower neutral mass fraction in halos.

CII LUMINOSITY VS. HALO MASS

CII FLUX DENSITY VS. HALO MASS

$$S_{\nu} = \frac{(1+z)L_{\nu}}{4\pi d_{L}^{2}},$$

$$L_{\nu} = \frac{L_{\text{CII}}}{\nu_{158} \left(\frac{v_{c}}{c}\right) 0.6} \propto M_{\text{halo}}^{2/3}$$
median
$$v_{c} = \left(\frac{GM}{r_{200}}\right)^{1/2}$$
circular velocity
$$S_{\nu} \approx C_{2} \left(\frac{M_{\text{halo}}}{10^{12}h^{-1}M_{\odot}}\right)^{2/3} \text{ mJy},$$

$$C_{2} = 0.6 \text{ mJy} \quad \text{(no feedback)}$$

$$C_{2} = 0.06 \text{ mJy} \text{ (strong feedback)}$$

FLUX DENSITY PDF

ESTIMATES FOR ACTUAL DLA GALAXIES

CONCLUSIONS

- DLAs are useful for high-z galaxy formation study
- Numerical modeling challenging
- Mean DLA halo mass: $\log \langle M_{\rm DLA} \rangle \simeq 11.5 12.5$
- possible DLA -- LBG connection
- SF threshold different at high-z?
- [CII] 158 micron emission: ~1 mJy for bright gals

--> Future project for ALMA & SPICA