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What are the Goals?

• Self-consistent model of galaxy formation 
(disk & bulge) and BH formation

• How did gas transform into stars?

• A model consistent with low-z & high-z 
observations?  (likewise, small - & large-scale)

• Does the hierarchical cold dark matter 
model work?

 



Outline

1. What are DLAs?   observations
2. Effects of SN feedback on:
★ ΩHI, f(NHI)
★ DLA cross section, rate-of-incidence (dN/dz)
★ physical size & # density 
★ mean DLA halo mass,  DLA--LBG
★ metallicity
★ how are DLAs distributed in halos?
★ implications on high-z SF

3. [CII] 158 micron emission



What are DLAs?

NHI > 2 × 10
20

cm
−2

☀ quasar

Wolfe+ ‘86
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Figure 4 Incidence of damped Lyα systems per unit cosmological distance dN/dX (denoted
as "c in the figure) as a function of redshift. The three data points at z = 0 are all local
measurements from 21 cm observations (Rosenberg & Schneider 2003; Ryan-Weber, Webster
& Staveley-Smith 2003; Zwaan et al. 2001). The curve overplotted on the data traces the
evaluation of dN/dX in a series of O.S Gyr intervals. Plot taken from Procheska, Herbert-Fort
& Wolfe (2005).

damped Lyα systems, Prochaska, Herbert-Fort & Wolfe (2005) use several tests
to show that #g(z) converges. First, they compute α1 for a single power-law fit to
f (N , X ) by increasing Nmin from 2×1020 cm−2. Using the full sample of damped
Lyα systems they find α1 decreases with increasing Nmin from −2.2 at Nmin =
2 × 1020 cm−2 to less than −3 at Nmin > 1021cm−2. At the same time they find
that α1 is insensitive to variations in Nmax . Second, they compute the sensitivity
of #g(z) to Nmax . Both the double power-law and $ function solutions converge
to the value indicated by the data (Equation 5). By contrast the single power-law
solution does not converge. This is the first evidence that #g(z) converges by N ≈
1022 cm−2.

Next, consider the redshift evolution of #g(z). Starting at the highest redshifts,
no increase of #g(z) with decreasing z is present at z > 3.5, contrary to earlier
claims (Storrie-Lombardi & Wolfe 2000, Péroux et al. 2003b). On the other hand,
Figure 5 shows the first statistically significant evidence that #g(z) evolves with
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Fortuitously, the 2 × 1020 cm−2 threshold is optimal for physical reasons un-
related to the properties of galaxy disks. Rather, at large redshifts it is the column
density that distinguishes neutral gas from ionized gas: at N(H I) < 2 × 1020 cm−2

the gas is likely to be ionized while at N(H I) > 2 × 1020 cm−2 it is likely to be
neutral. The minimal source of ionization is background radiation due to the inte-
grated population of QSOs and galaxies. Using background intensities computed
by Haardt & Madau (1996, 2003), Viegas (1995) and Prochaska & Wolfe (1996)
show that the gas in most of the “sub-damped Lyα” population [defined to have
1019 < N(H I) < 2 × 1020 cm−2] described by Péroux et al. (2002, 2003a) is in
fact significantly ionized with temperature, T > 104 K. This is a problem since gas
neutrality is a necessary condition if damped Lyα systems are to serve as neutral
gas reservoirs for star formation at high redshift, a defining property of the popula-
tion. For this reason the comoving density of H I comprising the sub-damped Lyα

population discussed by Péroux et al. (2003b) should not be included in the census
of gas available for star formation. As a result, the sub-damped Lyα correction to
the comoving density of neutral gas, "g(z), should be ignored. We suggest that
these ionization levels make “super Lyman-limit system” a more appropriate name
for systems with 1019 < N(H I) < 2 × 1020 cm−2.

2. THE NEUTRAL-GAS CONTENT OF THE UNIVERSE

In this section we describe how the surveys allow us to measure "g(z), the mass
per unit comoving volume of neutral gas in damped Lyα systems at redshift z
divided by the critical density, ρcrit. The results, first derived by Wolfe (1986) and
Lanzetta, Wolfe & Turnshek (1995) show that damped Lyα systems contain most
of the neutral gas in the Universe at redshifts 1.6 < z < 5.0.

2.1. Formalism

To estimate "g(z) we first derive an expression for the column-density distribution,
f (N , X ). Let the number of absorbers per sightline with H I column densities and
redshifts in the intervals (N , N + dN ) and (z, z + dz) be given by

dN (N , z) = nco(N , z)A(N , z)(1 + z)3|c dt/dz|dN dz, (1)

where nco(N , z) dN is the comoving density of absorbers within (N , N +dN ) at z
and A(N , z) is the absorption cross-section at (N , z). Defining dX ≡ (H0/c)(1 +
z)3|c dt/dz|dz (Bahcall & Peebles 1969) we have

dN (X )
dX

=
∫ Nmax

Nmin

dN f (X, N ), (2)

where

f (N , X ) ≡ (c/H0)nco(N , X )A(N , X ), (3)
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Rate-of-Incidence
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comoving h−2
70 kpc2) and the dark matter halo mass (in units of h−1M") at z = 3 as

log σco
DLA = α (log Mhalo − 12) + β, (1)

with slopes α = 0.72, 0.79, 0.84, 0.93, 1.02 and the normalization β = 3.94, 3.99, 3.98, 4.03, 4.18
for the O3, P3, Q3, Q4, and Q5 runs. The slope α is always positive, and the massive halos

have larger DLA cross section, but they are more scarce compared to less massive halos.
The quantity β gives the value of log σco

DLA at Mhalo = 1012 h−1M". This reference mass-scale

was chosen because it was well covered by most of the simulations used in their paper. Two
qualitative trends can be read off: (1) As the strength of galactic wind feedback increases
(from O3 to Q3 run), the slope α becomes steeper while the normalization β remains roughly

constant. This is because a stronger wind reduces the gas in low-mass halos at a higher rate
by ejecting the gas out of the potential well of the halo. (2) As the numerical resolution

is improved (from Q3 to Q5 run), both the slope and the normalization increase. This is
because with higher resolution, star formation in low-mass halos can be described better and

as a result the neutral gas content is decreased due to winds. On the other hand, a lower
resolution run misses the early generation of halos and the neutral gas in them.

Nagamine et al. (2004a) studied the cumulative distribution of DLA rate-of-incidence,
but here we study the differential distribution instead. The differential distribution function

of DLA incidence can be computed as

dNDLA

dz d log M
=

dr

dz
[ M n(M, z) ln(10) ] σco

DLA(M, z), (2)

where n(M, z) is the dark matter halo mass function, and dr/dz = c/H(z) with H(z) =

H0E(z) = H0

√
Ωm(1 + z)3 + ΩΛ for a flat universe. We use the Sheth & Tormen (1999)

parametrization for n(M) as shown in Figure 1. Note that the dependence on the Hubble

constant disappears on the right-hand-side of Equation (2) because dr/dz scales as h−1,
M n(M) scales as h3, and σDLA scales as h−2 in the simulation. For the cumulative version

of this calculation, see Equation (8) and Figure 5 of Nagamine et al. (2004a). Equation (2)
can be derived from the following expression for the DLA area covering fraction on the sky
along the line element c dt:

dNDLA = nphys(M) dM · σphys
DLA · c dt (3)

= (1 + z)3 nco(M) dM · σphys
DLA · a dr (4)

= nco(M) dM · σco
DLA · dr, (5)

where we have used c dt = a dr and σco
DLA = (1 + z)2 σphys

DLA. Here a is the scale factor,
dr is the line element in comoving coordinate, and nco(M) dM and nphys(M) dM are the

comoving and physical number density of halos in the mass range [M , M +dM ], respectively.
– 6 –

Sometimes the ‘absorption distance’ dX ≡ H0

c (1+z)3 c dt = H0

c (1+z)2 dr = H0

H(z) (1+z)2 dz =

(1 + z)2 dz/E(z) is defined, and is used to express the rate-of-incidence as

dNDLA

dX
=

c

H0
nco(M) dM · σphys

DLA. (6)

For z = 3 and our adopted cosmology, dX/dz = 3.5867. In Equations (3) to (6), we left in
the dependence on halo masses explicitly, but in practice an integral over a certain range of

halo mass has to be performed when comparing with actual observations.

We now use the power-law fits for σco
DLA(M, z) described above to compute the differential

distribution of DLA incidence via Equation (2). The result is shown in Figure 2 for all
the simulations at z = 3. The qualitative features of the curves are easy to understand.

Because n(M) ∝ M−2 at M ≈ 108−1012 h−1M" (see Figure 1), the distribution is flat when
σDLA ∝ M . In fact, n(M) is slightly shallower than M−2 (more like M−1.8), therefore the
distribution for the P3 run is almost flat at 108 < M < 1012 h−1M", because σDLA ∝ M0.79

in this simulation. At masses higher than 1012 h−1M", the mass function deviates from the
M−2 power-law significantly, and the distributions for all runs quickly drop off to a small

value.

The halo masses where each distribution peaks are listed in the second column of Table 2.
The peak halo mass Mpeak becomes larger as the feedback strength increases. For the O3
run, we indicated Mpeak = 108.5 h−1M" in parentheses because we think that the DLA cross

section rapidly fall off at this halo mass based on the work by Nagamine et al. (2004a) and
the peak halo mass is simply this cutoff mass-scale. The peak halo mass is significantly

larger for the Q4 (Mpeak = 1011.6 h−1M") and Q5 (Mpeak = 1012 h−1M") runs compared to
other runs.

4. Mean & Median halo masses of DLAs

For each simulation, we compute the mean DLA halo mass of the distribution shown in
Figure 2 as

〈MDLA〉 =

∫
∞

0 M dN
dzd log M d log M∫

∞

0
dN

dzd log M d log M
(7)

=

∫
∞

0 M2 n(M) σDLA(M) d log M∫
∞

0 M n(M) σDLA(M) d log M
, (8)

and the result of this calculation is summarized in Table 2. The mean halo mass is smaller for

the ‘no-wind’ (O3) run, and is larger for the ‘strong-wind’ (Q3 to Q5) runs. This is because of
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Figure 5 Neutral gas mass density versus z from Prochaska et al. (2005). H I data at
(a) z > 2.2 from SDSS-DR3 4 survey, (b) 0 < z < 1.6 from the MgII survey of S.M. Rao,
D.A. Turnshek & D.B. Nestor (private communication), and (c) at z = 0 (red diamond) from
Fukugita et al. (1998). Stellar mass density at z = 0 (red star) from Cole et al. (2001) and
stellar mass density of Irr galaxies (red plus sign) from Fukugita et al. (1998). Theoretical
curves from Cen et al. (2003) (green), Somerville et al. (2001) (yellow), and Nagamine et al.
(2004a) (blue; dotted is D5 model and solid is Q5 model).

redshift. Specifically, "g(z) decreases from 1 × 10−3 at z = 3.5 to 0.5 × 10−3 at
z = 2.3, which mirrors the decline in dN /dx discussed in Section 2.3. The same
mechanism is likely to cause the decline in both quantities, i.e., a decrease in H I
cross section due to feedback. But at z < 2.3 the picture is somewhat confusing.
Figure 5 shows an increase of "g(z) by z ∼ 2, which is consistent with the values
of "g(z) in the two lower redshift bins at 0 < z < 2. Indeed, the data are consistent
with no evolution, if one ignores the redshift interval centered at z = 2.3. However,
Prochaska, Herbert-Fort and Wolfe (2005) emphasize that the uncertainties in the
data at 0 < z < 2.3 are much larger than at z > 2.3, and thus such conclusions
should be treated with caution.

Next, we compare the high-z values of "g(z) with various mass densities at z =
0. First, comparison with the current density of visible stars, "∗, reveals that "g(z)
at z ≈ 3.5 is a factor of 2 to 3 lower than "∗: If the census of visible stars were
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DLAs dominate HI 
mass density at z~3      

Lanzetta et al. ‘95
Storrie-Lombardi & Wolfe ‘00

Wolfe+ ‘05

SDSS DR3 (Prochaska+ ‘05)

Ω★(z=0)
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and Nmin and Nmax are minimum and maximum column densities, respectively.1

Therefore, one cannot infer the comoving density nor the area of damped Lyα

systems from their incidence along the line of sight, but only their product. Note
that dN /dX will be independent of redshift if the product of the comoving density
and absorption cross-section at (N , X ) is independent of redshift. Since the gaseous
mass per damped Lyα system is given by µmH N A(N , X ), it follows from Equation
3 that

"g = H0

c
µmH

ρcrit

∫ Nmax

Nmin

dN N f (N , X ), (4)

where µ is the mean molecular weight, which is included to account for the
contribution of He to the neutral gas content.

Using these expressions in the discrete limit, several authors have determined
f (N , X ) and its first two moments, dN /dX and "g(z), where

"g(X ) = H0

c
µmH

ρcrit

∑n
i=1 Ni

$X
, (5)

and n is the number of damped Lyα systems within (X, X +$X ). We now discuss
each of these in turn.

2.2. f (N, X)

Figure 3 shows the most recent determination of f (N , X ) from the statistical
sample of over 600 damped Lyα systems (Prochaska, Herbert-Fort & Wolfe 2005).
The figure also shows best-fit solutions for the three functional forms used to
describe f (N , X ): a single power-law, f (N , X ) = k1 Nα1 ; a % function (e.g.,
Pei & Fall 1993) f (N , X ) = k2(N/Nγ )α2 exp(−N/Nγ ); and a double power-law
f (N , X ) = k3(N/Nγ )β where β = α3 at N < Nd and α4 at N ≥ Nd . The
single power-law solution with a best-fit slope of α1 = −2.20 ± 0.05 is a poor
description of the data since a KS test shows there is a 0.1% probability that the
data and power-law solution are drawn from the same parent population. This
result is in contrast with the Lyα forest where a single power-law with α1 ≈ −1.5
provies a good fit to the data (Kirkman & Tytler 1997).

Although a single power-law is a poor fit to the observations, the f (N , X ) dis-
tribution is steeper than N−2 at large column densities. This is illustrated by the
other two curves in Figure 3 that show the % function (dashed line) and the double
power-law (dashed-dot line). Both solutions are good fits to the data. Furthermore,
the solutions provide good agreement between the “break” column densities Nγ

and Nd , and between the power-law indices at low column densities, which ap-
proach a “low-end” slope α = −2.0. Most importantly, both solutions indicate
α $ −2.0 at N ≥ 1021.5 cm−2. The significance of this very steep slope at the
“high end” will be explored further in Section 2.4.

1Note that dX/dz = (1 + z)2[(1 + z)2(1 + z"m) − z(z + 2)"(]−1/2.
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for star formation      



Cosmological Hydrodynamic 
Simulations 

• model galaxy formation from first principles in a ΛCDM 
universe

• GADGET2 Smoothed Particle Hydrodynamics code

• LBGs@z=3-6, massive gal@z=1-2, DLAs, .... 
radiative cooling/heating, star formation, SN & galactic wind feedback

– 12 –

Table 1. Notation of Variables

Variable Definition

ρC , ρW density of CNM and WNM
ρ0 mean density of the total gas

VC , VW volume occupied by CNM and WNM
V0 volume of the star-forming region under consideration

fM mass fraction of CNM

fV volume fraction of CNM
fA area covering fraction of CNM clouds

ncl number density of CNM clouds
R characteristic radius of the spherical CNM cloud

L size of the star-forming region

Table 2. Simulation Parameters

Run Boxsize Np mDM mgas ε wind

O3 10.00 2 × 1443 2.42 × 107 3.72 × 106 2.78 none
P3 10.00 2 × 1443 2.42 × 107 3.72 × 106 2.78 weak

Q3 10.00 2 × 1443 2.42 × 107 3.72 × 106 2.78 strong
Q5 10.00 2 × 3243 2.12 × 106 3.26 × 105 1.23 strong

D5 33.75 2 × 3243 8.15 × 107 1.26 × 107 4.17 strong

G5 100.0 2 × 3243 2.12 × 109 3.26 × 108 8.00 strong

Note. — Simulations employed in this study. The box-size is

given in units of h−1 Mpc, Np is the particle number of dark matter
and gas (hence × 2), mDM and mgas are the masses of dark matter

and gas particles in units of h−1M", respectively, ε is the comoving

gravitational softening length in units of h−1 kpc.

(KN+ 04ab, 05ab)

[h−1Mpc] [h−1
M"] [h−1kpc]

318 V. Springel and L. Hernquist
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Figure 2. Projected baryonic density fields in slices through a selection of our simulations at various redshifts. In each case, the slice has a thickness equal to
one-fifth of the box size of the corresponding simulation (see Table 1). The Z4 simulation in the top left-hand corner has the highest spatial resolution, allowing
to identify the hot ‘bubbles’ in the IGM that develop as a result of impinging galactic winds. These bubbles are filled with gas with temperatures up to 106 K,
as seen in the projected mass-weighted temperature map in the top right-hand corner.
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DLAs in Cosmological 
SimulationsStar formation rate and metallicity of DLAs in cosmological simulations 7

NHI M* MZ

DLA SFR Z

Figure 2. Projected spatial distribution of various quantities for a halo of mass Mhalo = 2.6 × 1010h−1M" at z = 3 in the ‘Q5’-run.
Left column: NHI (top) and DLAs (bottom). Middle column: stellar surface mass density (top) and SFR surface density (bottom). Right
column: metal mass surface density (top) and gas metallicity (bottom). The size of each panel is comoving ±112h−1 kpc from the centre
of the halo.
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Figure 3. Projected spatial distribution of various quantities for a halo of mass Mhalo = 2.4 × 109h−1M" at z = 3 in the ‘Q5’-run.
The size of each panel is comoving ±57h−1 kpc from the centre of the halo. The graph on the top left shows the probability distribution
function of lines-of-sight (dn/d log NHI) for this halo and the one shown in Figure 2 as a function of log NHI. One can see that the
majority of the orange region is occupied by lines-of-sight with 11 < log NHI < 16, which could be observed in the Ly-α forest. The other
panels are ordered in the same way as in Figure 2.
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Figure 1. Evolution of the total neutral hydrogen mass density in each simulation box as a function of redshift. The plotted values are
ΩHI × 103. We also show observational data points from Storrie-Lombardi & Wolfe (2000, open squares; only for DLAs), Péroux et al.
(2001, filled triangles; including the correction for the neutral gas not included in DLAs), Rao & Turnshek (2000, open triangles), and
Zwaan et al. (1997, open cross at z = 0). Left panel: A comparison of the Q-series (runs in 10 h−1Mpc boxes) is shown. The decrease in
ΩHI from O3 (no wind) to P3 (weak wind), and then to Q3 (strong wind), shows the effect of feedback by galactic winds. The comparison
between Q3, Q4, and Q5 shows the level of convergence achieved for runs with different resolution. For P3 (top short-dashed line), we
separately show ΩHI in regions of overdensity 1 + δ > 103 and 104 (middle and bottom short-dashed line, respectively). Right panel:

Results for the R-, D-, and G-series are shown. Q5 is also included to ease comparison with the left panel. Results for R3 and G4 are
omitted for clarity (see text).

where it becomes highly ionised by UV background radia-
tion. Interestingly, ‘O3’ (no wind run) exceeds all observed
data points, so a feedback effect such as galactic winds ap-
pears necessary to make the ΩHI measurements of the sim-
ulations consistent with observations. The results for our
‘strong-wind’ runs (Q3, Q4, Q5) underpredict the observa-
tional estimates at z = 3 slightly, but there is still marginal
agreement within 1 σ, which is encouraging. However, the
best value for the galactic wind strength parameter for our
simulation seems to lie somewhere between that of P3 (weak
wind) and the Q-runs (strong wind).

For the ‘P3’ run, we also show separate measurements
of ΩHI restricted to regions of overdensity 1 + δ > 103 and
104, respectively (red short-dashed lines). The fact that the
lines for 1+ δ > 104 and 103 have converged by z ! 3 shows
that most of the neutral hydrogen mass in the universe is
already in a highly concentrated form by this epoch.

In the right panel of Figure 1, we show our results for
simulations of the R-, D-, and G-series, together with Q5
for reference to the left panel. The results for D4 and D5
are consistent with one another at z = 3. ‘R3’ is not shown
because it is almost identical to ‘R4’, and ‘G4’ is omitted
because it underpredicts ΩHI significantly due to lack of res-
olution at z ≥ 3. By comparing to the simulations of the Q-
and D-series, we see that the resolution of the G-series is not
sufficient to correctly describe the neutral fraction at z = 3.
This is because even the 2× 3243 run G5 misses the neutral
gas content in large numbers of small dark matter haloes

that are present in the higher resolution runs at z = 3, such
as those of the Q-series. Therefore, we consider Q5 to be the
most reliable run at z = 3 among our simulation set. We
also see that ΩHI of ‘R4’ is lower than that of ‘Q5’, despite
the fact that the R-series has higher mass resolution than
the Q-series. This is likely due to the rather small box-size
of the R-series compared to the Q-series, which leads to an
insufficient sampling of rare, massive objects, and compro-
mises the use of R4 as a truly representative sample of the
universe.

The effect of the multiphase model adopted in the cur-
rent simulations can be assessed by setting the value of cold
gas mass fraction to x = 1 for the multiphase gas parti-
cles [see Equation (3)]. We find that the value of ΩHI be-
comes larger by about 15% in such a case. This suggests that
previous formulations of hydrodynamic simulations with-
out a consideration for the multiphase nature of the gas
would have overestimated the cold gas fraction by a similar
amount.

4 Hi COLUMN DENSITY & DLA

CROSS-SECTION

We now describe how we compute the Hi column density
NHI and the DLA cross-section σDLA for each dark matter
halo. First, we identify dark matter haloes by applying a
conventional friends-of-friends algorithm to the dark matter
particles in each simulation. We set the minimum number of

c© 2002 RAS, MNRAS 000, 1–16
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Figure 6. Evolution of the DLA abundance from z = 4.5 to z = 0. Left panel: Cumulative DLA abundance as a function of total
halo mass at redshifts z = 4.5, 3, 1 and 0. Right panel: DLA abundance per unit redshift as a function of redshift. The data points
with error bars are the observational data from Péroux et al. (2001) (crosses) and Rao & Turnshek (2000) (open triangles at z < 1.5).
The exact simulation results from some of the runs are indicated by the symbols with run-names. The shaded region is our best-guess
for a confidence region based on combining all of our simulations. For reference, we show the power-law of dN/dz = N0(1 + z)γ with
N0 = 0.005 and γ = 2.5 as a long-dashed line.

earlier, our power-law fits to the σDLA−Mtot relation are not
well constrained for z = 0 (and possibly for z = 1 as well),
so the results at z ≤ 2 should be interpreted with caution.
At z ≥ 3, we saw that lower resolution runs tend to predict
a larger abundance due to a shallower slope in the relation
between the DLA cross-section and the halo mass, but it is
not clear if other forms of systematic bias dominate at very
low redshift for simulations with poor resolution. We will
need yet higher resolution simulations with large box-sizes
to make a more robust prediction of the DLA abundance at
z ≤ 2, and until then, it is not clear whether the current
results for DLA abundance at z ≤ 2, which tend to fall
below the observational data, are trustworthy. This is why
we have widened the shaded confidence region in Figure 6
significantly for z ≤ 2.

6 Hi COLUMN DENSITY DISTRIBUTION

FUNCTION

The column density distribution function f(N, X(z)) is
defined such that f(N, X)dNdX is the number of ab-
sorbers per sight line with Hi column densities in the in-
terval [N, N + dN ], and absorption distances in the interval
[X, X + dX]. The absorption distance X(z) is given by

X(z) =

∫ z

0

(1 + z′)2
H0

H(z′)
dz′. (9)

This definition is based on an argument by
Bahcall & Peebles (1969), who pointed out that the
probability of absorption for a quasar sight-line in
the redshift interval [z, z + dz] is dP ∝ (1 + z)2dr ∝

(1 + z)2[H0/H(z)]dz ≡ dX. In practice, if the comoving
box-size of the simulation is ∆L, then the corresponding ab-
sorption distance per sight-line is ∆X = (H0/c)(1 + z)2∆L.
For example, for ∆L = 10h−1 Mpc and z = 3, we have
∆X = 0.0534.

Assuming that DLAs do not overlap along a sight-line
through the simulation volume (which is a very good approx-
imation given the small size of the simulation box, where
the expected number of DLAs per sight-line at z = 3 for a
10h−1 Mpc path is ≈ 10−3), we can compute the NHI dis-
tribution function by counting the number of grid-cells with
column densities in the range [N, N + dN ]. In doing so, we
are treating each grid-cell element as one line-of-sight.

6.1 Hi column density distribution at z = 3

In Figure 7, we show the Hi column density distribution
function at z = 3. The solid triangles are the points directly
measured from the simulations. The open squares are the
observational data of Péroux et al. (2001, for 2.7 < z < 3.5
data), and the dashed curve is the fit to the same data based
on a gamma-distribution:

f(N) =
f∗
N∗

(
N
N∗

)−β

exp
(
−

N
N∗

)
. (10)

The parameters of the fit are (f∗, log N∗, β) =
(0.0406, 21.18, 1.10) Péroux et al. (2001, for 2.7 < z < 3.5
data). We note that all data by Storrie-Lombardi & Wolfe
(2000) are included in that of Péroux et al.’s.

In the panel for ‘Q3’ (upper right corner), we also show
the result of different smoothing methods, using crosses
(uniform cloud-in-cell distribution with # = [4π/3]1/3s)

c© 2002 RAS, MNRAS 000, 1–16
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Figure 7. Hi column density distribution function at z = 3. The solid triangles are the points measured directly from the simulations.
The open squares are the observational data of Péroux et al. (2001, for 2.7 < z < 3.5 data), and the dashed line is the fit to the same
data based on a gamma-distribution. In the panel for ‘Q3’, the results with different smoothing methods are shown in crosses and open
triangles. See text for details.

and open triangles (uniform clouds-in-cell distribution with
! = 1

2
[4π/3]1/3s). The former method (crosses) results in

higher values of f(N) at lower column densities because
it smoothes the gas mass into broader regions. The SPH
smoothing method agrees with the latter calculation method
(open triangles) better.

The agreement between the observations and the simu-
lations Q3, Q4, Q5, & D5 at log NHI > 21 is generally very
good. Results from runs of increasing resolution (Q3, Q4,
and Q5) are consistent with each other to a high degree.
The run with no wind (O3) somewhat overpredicts the dis-
tribution function at large NHI values, but as the galactic
wind strength increases from O3 to P3, and then to Q3,
the high column density systems become less abundant and
the agreement between the simulation and observations im-
proves. At intermediate column densities (20 < log NHI <
21), it seems that the simulated distribution function falls
short of the observational estimate. Given the consistent be-
haviour in Q3, Q4, and Q5, our result appears not to be
affected by resolution, although this cannot be completely
excluded. We will discuss this point further in the next sub-
section, when we consider the data at z = 4.5. It is clear

however that G4 and G5 do not have sufficient resolution at
z = 3 to resolve DLAs.

6.2 Hi column density distribution at z = 4.5

In Figure 8, we show the Hi column density distribution
function at z = 4.5. As before, the solid triangles are the
points measured in the simulations, and the open squares are
the observational data of Péroux et al. (2001, for 3.5 < z <
4.99 data). The long-dashed line is the gamma fit to the same
observational data of 3.5 < z < 4.5, and the short-dashed
line is the fit to the data for 2.7 < z < 3.5 for reference.
The values of the fit parameters for the 3.5 < z < 4.5 data
is (f∗, log N∗, β) = (0.2506, 20.46, 0.80).

Observational studies (Storrie-Lombardi & Wolfe 2000;
Péroux et al. 2001) indicate that there are fewer high NHI

systems (log NHI > 21) at z > 3.5 compared with 2.7 <
z < 3.5, and that the distribution function becomes steeper
at z > 3.5. However, we do not see such a reduction of
high NHI systems in our simulations from z = 3 to z =
4. In fact, the highest resolution simulation in our series
(Q5) suggests that f(N) is slightly higher (but steeper at
the same time) at z = 4.5 compared to z = 3. Note that
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data based on a gamma-distribution. In the panel for ‘Q3’, the results with different smoothing methods are shown in crosses and open
triangles. See text for details.
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In Figure 8, we show the Hi column density distribution
function at z = 4.5. As before, the solid triangles are the
points measured in the simulations, and the open squares are
the observational data of Péroux et al. (2001, for 3.5 < z <
4.99 data). The long-dashed line is the gamma fit to the same
observational data of 3.5 < z < 4.5, and the short-dashed
line is the fit to the data for 2.7 < z < 3.5 for reference.
The values of the fit parameters for the 3.5 < z < 4.5 data
is (f∗, log N∗, β) = (0.2506, 20.46, 0.80).

Observational studies (Storrie-Lombardi & Wolfe 2000;
Péroux et al. 2001) indicate that there are fewer high NHI

systems (log NHI > 21) at z > 3.5 compared with 2.7 <
z < 3.5, and that the distribution function becomes steeper
at z > 3.5. However, we do not see such a reduction of
high NHI systems in our simulations from z = 3 to z =
4. In fact, the highest resolution simulation in our series
(Q5) suggests that f(N) is slightly higher (but steeper at
the same time) at z = 4.5 compared to z = 3. Note that
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survey of all damped Lyα systems with NHI > 1021 cm−2.
In a future paper (Murphy et al. 2005, in prep.) we will
present a full analysis of gravitational lensing and dust
obscuration for the SDSS-DR3 sample.

5.3. Human Error

There is a non-negligible likelihood that we have over-
looked a few systems or have made significant errors in
a few select systems. Regarding PH04, for example, we
note the incorrect NHI value for the damped system at
z = 2.77 toward J084407.29+515311 (§ 3.3) and also a
bug in our calculation of "(z) for the SDSS-DR1 sam-
ple. To quickly disseminate corrected and updated re-
sults to the community, we have established a public web
site where all of the fits and analysis will be presented
(http://www.ucolick.org/∼xavier/SDSSDLA/index.html).
We encourage the community to report any mistakes with
our analysis to the lead author via the email address sdss-
dla@ucolick.org.

5.4. Unusual Systematic Effects: “Things that go bump
in the night”

With a sample of damped Lyα systems approaching
1000, it is not surprising that unexpected systematic errors
will arise. Figure 20 presents the Lyα profile and metal-
line profiles for the damped Lyα candidate at z = 2.42
toward J130634.6+523250. This damped Lyα candidate
was not identified by our automated algorithm because of
significant flux at the center of the Lyα profile. Instead,
the system was identified because of its metal-line absorp-
tion and we immediately hypothesized that the flux in the
Lyα profile was due to Lyα emission from the host galaxy.
The emission line would be amazingly strong, however,
and we considered alternate explanations. In due time, we
realized that the feature is an emission line: [OII] emission
from a z = 0.116 galaxy which lies within the 3′′ SDSS
fiber. Emission lines of Hα, Hβ, and [OIII] are also appar-
ent in the quasar spectrum. Ignoring the [OII] emission,
we have fit the Lyα profile and its central value places it
beneath the statistical threshold for damped Lyα systems.
Nevertheless, this is a systematic effect which leads to an
underestimate of fHI(N, X) at all NHI value. It is difficult
to quantify the overall effect here, but it is presumably less
than 1%.

6. DISCUSSION AND SPECULATIONS

The emphasis of this paper is to describe the results of
the damped Lyα survey of the SDSS-DR3 quasar database.
These results and a discussion of the systematic errors
were presented in the previous sections. We now consider
a few of the implications with emphasis on the new re-
sults. We also compare the observations against theoreti-
cal treatments of the damped Lyα systems within ΛCDM
models of galaxy formation. We consider the results from
the smooth particle hydrodynamic (SPH) simulations of
Nagamine, Springel, & Hernquist (2004), the Eulerian
simulations of Cen et al. (2003), and the semi-analytic
model (SAM) of the Santa Cruz group (Somerville, Pri-
mack, & Faber 2001; Maller et al. 2001, 2003). It is
important to stress that each model includes its own set
of star formation and feedback recipes which do bear on
the results for the damped Lyα systems.

Consider first the NHI frequency distribution, fHI(N, X).
Perhaps the most remarkable result from the SDSS-DR3
sample is that there is no statistical evidence for any evo-
lution in the shape of fHI(N, X) with redshift (Figure 7).
There is, however, evidence for evolution in the normaliza-
tion of fHI(N, X) as traced by the trends in the zeroth and
first moments of the distribution function. These results
suggest that the gas distribution within galaxies is simi-
lar at all redshifts and that only the number and/or sizes
of these galaxies evolve significantly. Another interesting
result is that the faint-end slope of the fHI(N, X) distri-
bution is α3 ≈ −1.8. This slope matches the faint-end
slope of the dark matter halo mass function for CDM (e.g.
Sheth, Mo, & Tormen 2001). If this is not a coincidence,
it indicates that low mass halos dominate the incidence of
damped Lyα systems at low NHI values. Furthermore, it
suggests that the cross-section A(X) of low mass galaxies
is nearly independent of mass. At present, however, we
consider the correspondence to be a coincidence.
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Fig. 21.— The H I frequency distribution of the damped Lyα
systems at z = 3 (top; specifically z = 2.8 to 3.2) and z = 4 (bottom;
specifically z = 3.7 to 4.3) compared against the theoretical curves of
Maller et al. (2001) (SAMS; lighter curve) and Nagamine, Springel,
& Hernquist (2004) (SPH; darker curves; dashed is the D5 model
and solid is the Q5 model).

A comparison of the results against ΛCDM models of
galaxy formation is presented in Figure 21 at z = 3 and
z = 4. The fHI(N, X) curves are for the SPH simula-
tions of Nagamine, Springel, & Hernquist (2004) and the
SAM model of Maller et al. (2001). The SAM model
shows a reasonable match to the shape of fHI(N, X) at
z = 3, yet systematically underpredicts the observations.
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Fig. 21.— The H I frequency distribution of the damped Lyα
systems at z = 3 (top; specifically z = 2.8 to 3.2) and z = 4 (bottom;
specifically z = 3.7 to 4.3) compared against the theoretical curves of
Maller et al. (2001) (SAMS; lighter curve) and Nagamine, Springel,
& Hernquist (2004) (SPH; darker curves; dashed is the D5 model
and solid is the Q5 model).

A comparison of the results against ΛCDM models of
galaxy formation is presented in Figure 21 at z = 3 and
z = 4. The fHI(N, X) curves are for the SPH simula-
tions of Nagamine, Springel, & Hernquist (2004) and the
SAM model of Maller et al. (2001). The SAM model
shows a reasonable match to the shape of fHI(N, X) at
z = 3, yet systematically underpredicts the observations.
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comoving h−2
70 kpc2) and the dark matter halo mass (in units of h−1M") at z = 3 as

log σco
DLA = α (log Mhalo − 12) + β, (1)

with slopes α = 0.72, 0.79, 0.84, 0.93, 1.02 and the normalization β = 3.94, 3.99, 3.98, 4.03, 4.18
for the O3, P3, Q3, Q4, and Q5 runs. The slope α is always positive, and the massive halos

have larger DLA cross section, but they are more scarce compared to less massive halos.
The quantity β gives the value of log σco

DLA at Mhalo = 1012 h−1M". This reference mass-scale

was chosen because it was well covered by most of the simulations used in their paper. Two
qualitative trends can be read off: (1) As the strength of galactic wind feedback increases
(from O3 to Q3 run), the slope α becomes steeper while the normalization β remains roughly

constant. This is because a stronger wind reduces the gas in low-mass halos at a higher rate
by ejecting the gas out of the potential well of the halo. (2) As the numerical resolution

is improved (from Q3 to Q5 run), both the slope and the normalization increase. This is
because with higher resolution, star formation in low-mass halos can be described better and

as a result the neutral gas content is decreased due to winds. On the other hand, a lower
resolution run misses the early generation of halos and the neutral gas in them.

Nagamine et al. (2004a) studied the cumulative distribution of DLA rate-of-incidence,
but here we study the differential distribution instead. The differential distribution function

of DLA incidence can be computed as

dNDLA

dz d log M
=

dr

dz
[ M n(M, z) ln(10) ] σco

DLA(M, z), (2)

where n(M, z) is the dark matter halo mass function, and dr/dz = c/H(z) with H(z) =

H0E(z) = H0

√
Ωm(1 + z)3 + ΩΛ for a flat universe. We use the Sheth & Tormen (1999)

parametrization for n(M) as shown in Figure 1. Note that the dependence on the Hubble

constant disappears on the right-hand-side of Equation (2) because dr/dz scales as h−1,
M n(M) scales as h3, and σDLA scales as h−2 in the simulation. For the cumulative version

of this calculation, see Equation (8) and Figure 5 of Nagamine et al. (2004a). Equation (2)
can be derived from the following expression for the DLA area covering fraction on the sky
along the line element c dt:

dNDLA = nphys(M) dM · σphys
DLA · c dt (3)

= (1 + z)3 nco(M) dM · σphys
DLA · a dr (4)

= nco(M) dM · σco
DLA · dr, (5)

where we have used c dt = a dr and σco
DLA = (1 + z)2 σphys

DLA. Here a is the scale factor,
dr is the line element in comoving coordinate, and nco(M) dM and nphys(M) dM are the

comoving and physical number density of halos in the mass range [M , M +dM ], respectively.

– 6 –

Sometimes the ‘absorption distance’ dX ≡ H0

c (1+z)3 c dt = H0

c (1+z)2 dr = H0

H(z) (1+z)2 dz =

(1 + z)2 dz/E(z) is defined, and is used to express the rate-of-incidence as

dNDLA

dX
=

c

H0
nco(M) dM · σphys

DLA. (6)

For z = 3 and our adopted cosmology, dX/dz = 3.5867. In Equations (3) to (6), we left in
the dependence on halo masses explicitly, but in practice an integral over a certain range of

halo mass has to be performed when comparing with actual observations.

We now use the power-law fits for σco
DLA(M, z) described above to compute the differential

distribution of DLA incidence via Equation (2). The result is shown in Figure 2 for all
the simulations at z = 3. The qualitative features of the curves are easy to understand.

Because n(M) ∝ M−2 at M ≈ 108−1012 h−1M" (see Figure 1), the distribution is flat when
σDLA ∝ M . In fact, n(M) is slightly shallower than M−2 (more like M−1.8), therefore the
distribution for the P3 run is almost flat at 108 < M < 1012 h−1M", because σDLA ∝ M0.79

in this simulation. At masses higher than 1012 h−1M", the mass function deviates from the
M−2 power-law significantly, and the distributions for all runs quickly drop off to a small

value.

The halo masses where each distribution peaks are listed in the second column of Table 2.
The peak halo mass Mpeak becomes larger as the feedback strength increases. For the O3
run, we indicated Mpeak = 108.5 h−1M" in parentheses because we think that the DLA cross

section rapidly fall off at this halo mass based on the work by Nagamine et al. (2004a) and
the peak halo mass is simply this cutoff mass-scale. The peak halo mass is significantly

larger for the Q4 (Mpeak = 1011.6 h−1M") and Q5 (Mpeak = 1012 h−1M") runs compared to
other runs.

4. Mean & Median halo masses of DLAs

For each simulation, we compute the mean DLA halo mass of the distribution shown in
Figure 2 as

〈MDLA〉 =

∫
∞

0 M dN
dzd log M d log M∫

∞

0
dN

dzd log M d log M
(7)

=

∫
∞

0 M2 n(M) σDLA(M) d log M∫
∞

0 M n(M) σDLA(M) d log M
, (8)

and the result of this calculation is summarized in Table 2. The mean halo mass is smaller for

the ‘no-wind’ (O3) run, and is larger for the ‘strong-wind’ (Q3 to Q5) runs. This is because of

Mean DLA halo mass
no feedback

strong feedback

σDLA ∝ M
α

halo

〈MDLA〉 # 10
11.5−12.5

M"

~ LBG halo mass
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duce strong evidence for an overdensity of LBGs near DLAs
and present the first detection of the three-dimensional DLA-
LBG cross-correlation function. A more complete discussion
of the DLA-LBG cross-correlation analysis will be presented
in a forthcoming publication (Cooke et al. 2006), along with
our independent measurement of the z ∼ 3 LBG autocorrelation
function. In this Letter, we adopt a Qm p 0.3, QL p 0.7
cosmology.

2. OBSERVATIONS

We acquired deep u′BVRI images from 2000 April through
2003 November of nine QSO fields with 11 known DLAs (2.78
! z ! 3.32) using the Carnegie Observatories Spectrograph and
Multiobject Imaging Camera (Kells et al. 1998) on the 200 inch
(5 m) Hale Telescope at Palomar and the Low-Resolution Im-
aging Spectrometer (LRIS; Oke et al. 1995) on the Keck I
Telescope. The data were reduced in a standard manner. We
developed a u′BVRI photometric selection technique for LBGs
at z ∼ 3 that proved comparable to previous techniques in both
efficiency and resulting redshift distribution. Over the 465
square arcminutes surveyed, we found 796 objects that met
our color criteria. Follow-up multiobject spectroscopy of 529
LBG candidates using LRIS yielded 339 redshifts. We iden-
tified 211 LBGs with z 1 2 and used these in the cross-corre-
lation analysis. More information about the data acquisition,
reduction, and analysis can be found in Cooke et al. (2005).

3. CLUSTERING ANALYSIS

3.1. Evidence of an LBG Overdensity near DLAs

As a coarse measure of the distribution of LBGs near DLAs,
we divided our survey volume into cells with dimensions of
the field area of LRIS at z ∼ 3 (∼7#10 h!1 Mpc) and Dz p
0.025 (∼17 h!1 Mpc). The choice of cell size follows that of
Adelberger et al. (1998) and A03 and includes the majority of
the objects associated with a central object having a galaxy
bias less than or equal to the LBG bias at z ∼ 3. The extended
length in the redshift direction is intended to account for the
∼1–2 h!1 Mpc error in the systemic redshift measurement in-
herent to LBGs.
This simple counts-in-cells analysis found an average of 1.27

objects residing in cells centered on each of the 11DLAs, where
an average of 0.85 objects should have been found randomly.
Random values were determined for objects in identical cells
at the redshifts of the DLAs pulled from normalized random
catalogs that mimicked the constraints of the data and were
corrected by the photometric selection function (see Cooke et
al. 2005, 2006). This observed overdensity can be compared
with an average of 1.16 objects found in cells of identical size
centered on LBGs in our survey having similar redshifts to the
DLAs but located in other fields. Interestingly, two of the 14
objects associated with the DLAs are QSOs. Since QSOs are
believed to form in massive dark matter halos that seed
supermassive black holes, this suggests that the corresponding
DLAs reside in overdense regions.

3.2. DLA-LBG Cross-Correlation Function

We measured the DLA-LBG cross-correlation function,
yDLA-LBG, using the usual approach of comparing galaxy pair
separations in the data with galaxy pair separations in random
galaxy catalogs. We used the estimator of Landy & Szalay

(1993) to measure the excess probability over random of finding
an LBG at a distance r from a DLA:

y (r)DLA-LBG

D D ! D R ! R D " R RDLA LBG DLA LBG DLA LBG DLA LBGp , (1)
R RDLA LBG

where DDLADLBG is the catalog of data-data pair separations,
DDLARLBG and RDLADLBG are the data-random and random-data
pair separation cross-reference catalogs, and RDLARLBG is the
catalog of random-random pair separations. This estimator is
well suited for small galaxy samples and has a nearly Poisson
variance. The random catalogs were constructed to be many
times larger than the data catalog in order to reduce shot noise
and were then normalized to the data. The mean LBG density
was determined from the data in all 11 fields. We determined
y(r) by counting the number of pairs in each catalog over a
series of logarithmic or linear intervals (i.e., bins). In addition,
we made the assumption that y(r) follows a power law of the
form

!gy(r) p (r/r ) . (2)0

3.3. Conventional Binning

We initially measured the correlation function by duplicating
the cylindrical binning technique described in Appendix C of
A03. This technique was adopted to help minimize the effect
that LBG redshift uncertainties have on the clustering signal
as compared with traditional radial bins. In addition, this ap-
proach permitted a direct comparison of our results with the
published values of A03 using the available online data set4 of
Steidel et al. (2003), since both surveys were executed in a
similar manner and used the same instruments and con-
figurations.
In this treatment, the expected projected angular overdensity

is defined to be

g 1!gr r 1 g !1 1 g !10 vq (r ) { B , I , , (3)p v x( ) ( )2r 2 2 2 2z

where rz is the greater of (1000 km s!1)(1" z)/H(z) and 7rv

and B and Ix are the beta and incomplete beta functions with
x { r (r " r )!1 (Press et al. 1992). Applying this method to2 2 2

z z v

the DLA-LBG cross-correlation, we found best-fit parameter
values and 1 j uncertainties of r0 p 3.3!1.3 h!1 Mpc, g p
1.7! 0.4. Figure 1 presents and compares the results with the
LBG autocorrelation results of A03 and is plotted in a consis-
tent manner with that work, where rmax p rz as described above.
The errors on the cross-correlation values shown in the figure
are those determined using the formulation of Landy & Szalay
(1993), and the reported errors on the functional fit were de-
termined by duplicating the Monte Carlo error analysis as de-
scribed in A03. The latter error analysis may underestimate the
true error by a factor of ∼1–2 (Adelberger et al. 2005).
Although the uncertainties are large, it is immediately ap-

parent from Figure 1 that the form and central values of the
two correlation functions are similar. In addition, we computed
a cross-correlation length of r0 p 3.5!1.0 h!1 Mpc for a fixed

4 See http://vizier.cfa.harvard.edu/viz-bin/VizieR?sourcepJ/ApJ/592/728/.
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Fig. 1.—Measurement of the DLA-LBG cross-correlation following the
binning and correlation method of Adelberger et al. (2003) and plotted in a
consistent manner. The cross-correlation values are indicated by diamonds,
and the best fit of r0 p 3.3!1.3 h!1 Mpc, g p 1.7! 0.4 is indicated by the
solid line. The errors shown are near-Poisson, and the reported errors are where
68% of the best-fit values lie from a Monte Carlo analysis of the functional
fit. For a fixed value of g p 1.6, we find a best-fit correlation length of r0 p
3.5!1.0 h!1 Mpc. The LBG autocorrelation (squares) of Adelberger et al.
(2003) are overlaid over a similar scale with the published fit of r0 p 3.96
! 0.29 h!1 Mpc, g p 1.55! 0.15 (dotted line). The DLA-LBG cross-corre-
lation values are consistent with the angular wide-field analysis of Bouché &
Lowenthal (2004) that was most effective on larger scales (∼5–15 h!1 Mpc).
[See the electronic edition of the Journal for a color version of this figure.]

Fig. 2.—Two-parameter probability contours for the DLA-LBG cross-
correlation using the maximum likelihood method. The best fit-values of
r0 p 2.8 h!1 Mpc, g p 2.1 are indicated by the larger diamond. The"1.4 "1.3

!2.0 !1.4

best-fit value of r0 p 2.9 h!1 Mpc for a fixed value of g p 1.6 (smaller"1.4
!1.5

diamond) is shown with the associated 1 j uncertainty on r0. For comparison,
the square and error bars indicate the LBG autocorrelation best-fit values and
1 j uncertainties of 4.0! 0.6 h!1 Mpc, g p 1.6! 0.1 from Adelberger et al.
(2005). Here the angular positions of the galaxies in the random catalogs were
made to be identical to the data to minimize possible artificial clustering effects
caused by the physical constraints of the slit masks. [See the electronic edition
of the Journal for a color version of this figure.]

TABLE 1

DLA-LBG Cross-Correlation Parameter Summary

Method r0 g

Conventional binninga,b . . . . . . . 3.32!1.3 1.74! 0.4
Maximum likelihoodb,c . . . . . . . . 2.81"1.4

!2.0 2.11"1.3
!1.4

Cumulative x2 testb,c,d . . . . . . . . . 3.84"4.2
!3.8 2.06"2.0

!1.3

Conventional binninga,d,e . . . . . . 3.21!1.0 2.03! 0.2
Maximum likelihoodc,d,e . . . . . . 3.20"2.2

!2.9 1.62"1.4
!1.0

Cumulative x2 testc,d,e . . . . . . . . . 3.91"4.4
!3.9 2.11"2.7

!1.3

a Galaxy separations determined using the cylindrical ap-
proach described in Adelberger et al. (2003), Appendix C.

b Angular positions of galaxies in the random catalogs are
identical to the angular positions of the data (to minimize
possible artificial clustering effects caused by the slit masks).

c Galaxy separations determined radially.
d Described in Cooke et al. (2006).
e Angular positions of galaxies in the random catalogs are

random.

value of g p1.6, the value reported in A03 and Adelberger et
al. (2005) for the LBG autocorrelation. Our decision to center
the DLAs in the observed fields prevented an estimation of the
DLA-LBG cross-correlation effectively beyond ∼4 h!1 Mpc
using the above method. However, our cross-correlation values
are consistent with the constraints placed on the DLA-LBG
cross-correlation by Bouché & Lowenthal (2004) using a com-
parable method over a range of ∼5–15 h!1 Mpc.

3.4. Maximum Likelihood

As an independent method of analysis, and to make the most
of our data set, we determined the maximum likelihood of a
power-law fit (eq. [2]) to the observed data (e.g., Croft et al.
1997; Mullis et al. 2004). We divided the radial separations
into a large number of finely spaced regular intervals that co-
incided with either one or zero LBGs. Poisson statistics hold
in the regime of large interval number and small probability
per interval. We used this to form the likelihood function

N N!m n !m ni i j je m e mi jL p , (4)! !
i n ! j(i n !i j

where mi is the expected number of pairs in the ith interval,
ni is the observed number of pairs for that same interval, and
the index j runs over the elements where there are no pairs.
The expected number of pairs was determined by solving equa-
tion (1) for DDLADLBG over a reasonable range of r0 and g. We
then maximized the expression S p !2 ln L. Confidence lev-
els were defined as DS p S(r0,best, gbest) ! S(r0, g) with the as-
sumption that S has a x2 distribution. We found the best-fit
values and 68% confidence levels for the cross-correlation us-

ing this method to be r0 p 2.8 h!1 Mpc and g p 2.1"1.4 "1.3
!2.0 !1.4

with a best-fit value of r0 p 2.9 h!1 Mpc for a fixed g p"1.4
!1.5

1.6. Figure 2 displays these results.
Cooke et al. (2006) will describe the above analyses in more

detail, present several tests to address the shortcomings of each
method, and make efforts to quantify the physical effects that
the multiobject slit masks have on the clustering signal.
A short summary of best-fit values and 1 j uncertainties

described here and from that work is provided in Table 1. It
can be seen that all independent methods, and tests thereof,
result in consistent central values within their uncertainties.

4. DISCUSSION

The LBG bias at z ∼ 3, derived from the LBG autocorrelation
of the R ! 25.5 spectroscopic sample, has led to an average

r0 = 3.3 ± 1.3 h−1Mpc

γ = 1.7 ± 0.4

Best-fit

LBG-auto

Cooke+ ‘05

γ = 1.55 ± 0.15

r0 = 3.96 ± 0.29 h
−1Mpc

〈MDLA〉 # 10
11.2

M!
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Faint Galaxies in UDF

Wolfe & Chen ‘06, in prep

No extended SF region detected at high-z.
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~ 3 kpc @ z=3
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at high-z?

Wolfe & Chen ‘06, in prep
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Number Density of DLAs

More DLAs than LBGs
down to RAB=30 mag

if ADLA<5 kpc
  



Can we detect DLA gas
directly? 



Why CII?

• Dominant coolant of   MW   
• Complementary to opt-IR           

(cf. Lyman break galaxies @ z~3)

• A new window for high-z SF 
using DLAs 

• Cosmological galaxy 
formation study with ALMA 

DLAs 2121)IH(
*)IIC(

][ ~ Ahn N
N

IIC νΛ

      CII*
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Local Obs of [CII]

Contoursi+ ‘02 

flux in the 5–10 lm band, !f!(5–10 lm), by multiplying the
ISOCAM LW2 (5–8.5 lm) flux by a scale factor of 1.7 (see
Helou et al. 2000; 2001).

Figure 4 shows that the [C ii]/FIR ratio decreases as the
radiation field increases (Malhotra et al. 2001). On the other

hand the [C ii]/!f!(5–10 lm) ratio is quite constant for a
large range of radiation fields (Helou et al. 2001; Fig. 4,
stars). The behavior of the C ii/FIR ratio has been inter-
preted as principally due to an increase of the positive
charge of grains as the incident stellar flux increases, which

Fig. 3.—NGC 1313 (top) and NGC 6946 (bottom) [C ii] contours superposed on the LW2 (6.75 lm) ISOCAM images (Dale et al. 2000). Only the [C ii] flux
values higher than 5 " after background subtraction have been considered for the interpolation. The contour levels for NGC 6946 go from 1.6 to 20 ! 10"6

ergs s"1 cm"2 sr"1 with 0.8 ! 10"6 ergs s"1 cm"2 sr"1 spacing. For NGC 1313 they go from 1.8 to 9.5 ! 10"6 ergs s"1 cm"2 sr"1 with a 0.4 ! 10"6 ergs s"1 cm"2

sr"1 step.

No. 2, 2002 OBSERVATIONS OF NGC 6946 AND NGC 1313 759

Contours: CII line emission
Image: 5-8 micron ISOCAM

ISO

e.g.
Madden+ ‘93
Malhotra+ ‘97, ‘01
Leech+ ‘99
Contoursi+ ‘02



Multi-phase ISM model

CNM

WNM

T~100 K

T~8000 K
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     Wolfe+ ‘03
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(Wolfe+ ‘03b; Howk+ ‘05)



CNM mass fraction

ρCVC + ρW VW = ρ0V0 (mass conservation)

VC + VW = V0 (volume conservation)

=
1 − (ρW /ρ0)

1 − (ρW /ρC)

(CNM mass fraction)

(CNM) (WNM)

Given ρ0, ρC , ρW , fM

fM ≡

ρCVC

ρ0V0

KN+ ‘06



Phase Diagram

techniques and iterative procedures outlined in W95. We
checked our technique by computing solutions for ISM con-
ditions. In that case we assumed G0 ¼ 1:7, ½Si=H#int ¼ 0,
log10 ! ¼ ½Fe=H#, and the same density-dependent depletion
formulae advocated by W95. The results are in good,
although not exact, agreement. Most importantly, the lcr
versus n curves are in excellent agreement with the W95
results except at log10 n < $0:5 cm$3 where optical pumping
effects ignored by these authors cause lcr to deviate
significantly above n!C ii.

To illustrate the behavior of two-phase media with
DLA conditions, we let ½Si=H#int ¼ $1:3, the mean Si
abundance found for DLAs (PW02). We assume the
‘‘Gal ’’ model and use maximum depletion to find
log10 ! ¼ $1:5. We assume an ISM radiation field,
G0 ¼ 1:7, and adopt the mean redshift of the DLA
sample, z ¼ 2:8, to compute the CMB temperature. We
compute the cosmic-ray and X-ray heating rates from
equation (9) by assuming the ISM SFR log10 _ % % ¼ $2:4
M& kpc$2 yr$1. The resulting equilibrium curves shown
in Figure 3 exhibit the same two-phase equilibria found
by W95 for the ISM. In a plot of pressure, P/k, versus
density, n (see Fig. 3a), the regions of thermal stability
occur where @ðlogPÞ=@ðlog nÞ > 0 (in the case of constant
C). Thus, a two-phase medium in which a WNM can

remain in pressure equilibrium with a CNM can be main-
tained between Pmin=k ) 460 K cm$3 and Pmax=k ) 1750
K cm$3. An example in which P ¼ ðPminPmaxÞ1=2 is
shown as the horizontal line connecting the WNM and
CNM. The intercepts with the P(n) curve in the WNM
and CNM correspond to thermally stable states: a WNM
with T ) 7600 K and log10 n ) $1 cm$3 in pressure equi-
librium with a CNM with T ) 80 K and log10 n ) þ1
cm$3. Gas with densities $0:6 cm$3 < log10 n < 0:0 cm$3

is thermally unstable and evolves to either WNM or
CNM states. Figure 3b shows the fractional ionization as
a function of density.

Figure 3c plots the heating rates, C (magenta curves),
cooling rates, n! (green curves and dotted blue curve in
the case of C ii), and the spontaneous emission rate lcr
(solid blue curve). It is evident that grain photoelectric
heating dominates in the CNM while cosmic ray heating
dominates in the WNM (see W95). By contrast to the
ISM, cosmic rays dominate X-ray heating in DLAs for
all densities, as a result of the higher X-ray opacity of
the H i column density assumed for DLAs. The domi-
nant coolant in the CNM is [C ii] 158 lm radiation,
which is insensitive to density at 0:5 cm$3 < log10 n < 4:0
cm$3. This breaks down at log10 n > 4:5 cm$3 (not
shown) where C i photoionization dominates the heating

Fig. 3.—Two-phase diagrams for gas heated by grain photoelectric emission plus cosmic rays and soft X-rays, where the SFR per unit area log10 _ % % ¼ $2:4
M& yr$1 kpc$2, metallicity ½C=H# ¼ $1:5, and dust-to-gas ratio log10 ! ¼ $1:7. (a) Pressure vs. density. The S-shaped curve is indicative of a two-phase
medium. Labels and horizontal line in the (n, P)-plane are explained in the text. (b) Fractional ionization vs. density. Magenta curves in (c) show grain
photoelectric heating (PE), cosmic-ray heating (CR), X-ray heating (XR), and C i photoionization heating rate vs. density. The dotted blue curve is the [C ii]
158 lm cooling rate, and green curves are [O i], [Si ii], Ly", and grain recombination cooling rates. The solid blue curve is the [C ii] 158 lm spontaneous energy
emission rate. The black curve (C) is the total heating rate. (d ) Temperature vs. density.

No. 1, 2003 C ii* ABSORPTION IN DAMPED Ly" SYSTEMS. I. 223

Γ = nΛ

Equilibrium:

CII luminosity per H atom
(dotted line)

!CII

Wolfe+ ‘03



CNM mass vs. Halo mass
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CII luminosity vs. 
Halo mass
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CII Flux Density vs. 
Halo mass
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Fig. 10.— [C ii] flux density of each dark matter halo as a function of halo mass at z =
3. The 3 contour levels are for (1, 10, 100) data points in each 2-dimensional bin of size

(∆ log Mhalo, ∆ log Sν) = (0.11, 0.13) from low to high. The long-dashed line in the top left
panel and the short-dashed line in other panels show the relationship log Sν = 2

3
(log Mhalo −

12) + C2, where C2 = −0.2 and −1.2, respectively.

C2 = 0.6 mJy

C2 = 0.06 mJy
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Fig. 12.— Cumulative probability distribution of [C ii] sources as a function of flux density
Sν for the same models shown in Figure 11. It is seen that the majority of the sources are

faint objects with Sν < 0.1mJy. This suggests that one has to aim at very bright LBGs in
order to have a detection even with ALMA and SPICA.
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Conclusions

• DLAs are useful for high-z galaxy formation study

• Numerical modeling challenging

• Mean DLA halo mass: 

• possible DLA -- LBG connection

• SF threshold different at high-z?

• [CII] 158 micron emission:  ~1 mJy for bright gals

log 〈MDLA〉 # 11.5 − 12.5

--> Future project for ALMA & SPICA


