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Large-scale structure in the Universe

SDSS (optical)
Today
dp/p>>1

Blanton et al. 2003

WMAP (microwave)
Early Universe
dp/p~10-3

Courtesy of WMAP team
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Formation of the large-scale structure in the Universe




Cosmology and Astrophysics with Galaxy Clusters

Clusters of galaxies provide important insights
into the nature of dark energy and dark matter.

Core of the Perseus Galaxy Cluster
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The most massive galaxies and black holes
in the universe form and evolve in cores of
galaxy clusters.




Cosmology and Astrophysics with Galaxy Clusters

m The majority of baryons in clusters are in the form of hot, X-ray emitting
intracluster plasma.

m Understanding thermodynamics (e.g., heating and cooling) of the
intracluster plasma is important for the use of galaxy clusters as
cosmological probes as well as understanding the physics of the most
massive galaxies and black holes.

® Main Challenges for Cluster Cosmology: understanding cluster gas
physics (e.g., gas cooling and heating by energy feedback) and calibrate
the relationship between X-ray and SZE observables and mass (A=500).
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How does galaxy formation physics affect global cluster properties?
How do current simulations compare with observations?
How well cluster observables correlate with mass?



High-Resolution Cluster Simulations

N-body+Gasdynamics with ART code

o Collisionless dynamics of DM and stars
o Gasdynamics: Eulerian Adaptive Mesh Refinement

o Radiative cooling and heating of gas:
metallicity dependent net cooling/heating rates

Dark Matter

Box Size ~ 80h"Mpc o Star Formation using the Kennicutt (1998) recipe
Peak Resolution = 2h-kpc
] o o Thermal stellar feedback
Ga';Density oA o Metal enrichment by SNIl/la

o No AGN feedback, thermal conduction,
cosmic-rays, magnetic field & physical viscosity

Cluster Samples

o High-resolution allows us to actually
simulate clusters of galaxies

o Effects of galaxy formation on the ICM
» Sample of 16 clusters in ACDM model

» Two sets of runs with cooling & SF (CSF)
and with non-radiative gasdynamics

» Comparison with Chandra X-ray
observations of nearby, relaxed clusters
(Vikhlinin et al. 2006)




Testing Chandra measurements
with mock observations of simulated clusters

m generate “Chandra data” for clusters from cosmological simulations

m reduce with real data analysis pipeline
» gas mass accurate to ~3%, temperatures are accurate to <~10%
» but, hydrostatic mass is biased low by ~10% due to turbulence

unrelaxed cluster relaxed cluster
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Mock Chandra photon\maps of simulated clusters

Nagai, Vikhlinin & Kravtsov 2007, ApJd, 655, 98
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Intracluster Gas Profiles:
Effects of gas cooling and star formation
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red line:

mean profile for relaxed
clusters in non-radiative
(“adiabatic”) simulations

blue band:

mean profile for relaxed
clusters in simulations with
cooling and star formation
width = rms scatter

dotted line : Tx < 3keV
dashed line : Tx > 3keV

Nagai, Kravtsov, Vikhlinin
2007, Apd, 668, 1
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Intracluster Gas Profiles:
Comparison with observations
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red line:

mean profile for relaxed
clusters in non-radiative
(“adiabatic”) simulations

blue band:

mean profile for relaxed
clusters in simulations with
cooling and star formation
width = rms scatter

Thin dashed lines: profiles
of Chandra observations of
nearby, relaxed clusters of

different temperature



Entropy scaling with cluster mass & Tx

g 0.1r,,, IE Ta00 27 Simulations with cooling+SF
S o5 1L é.&%?o | reproduce both the amplitude and
: R j;/ y-3E g@? - : scaling with temperature (i.e., mass)
B -~ 1C ) ] og o
< i . o ;f%o 10 -2°6 i exhibited by observed clusters at
B g0 T | r>0.1 r,,, but not in the core
f 10° ; //;oc%nga E E e cooling+SF E 200
a zl/ el | | 1F © “°nl‘radia“"el - Solid black pts: CSF simulations
N (11 L1 1l Lyl M L1 1ain L1
= 101 1014 10151013 1014 1018 Open black pfs: non-radiative sim.
M h-1 M
'(\)_l _I IIIII 1 1 LI Illf:(l)o (_ _I IIIIIG)) 1 1 LI IIIII ) Chandro dGTG
g 0.1r,,, Feoo *m%;/ Vikhlinin et al. 2006
> 10° o .- 3F e“»0“ E red pts: XMM-Newton data
2 F R i | : Pratt et al. 2006
% - 4 i‘%ﬁ‘:}‘ 1B~ y
o 102 o Tes®T L Chandra | blue pts: ROSAT+ASCA data
3 b 1E # XMM-Newton 3 Ponman et al. 2003
N “ 1F + ROSAT+ASCA ]
- C 11111 1 Ll Al 1 Lol ]
= i 10 ! 10 Nagai, Kravtsov, Vikhiinin
T, (keV) 2007, ApJ, 668, 1

mean temperature of the ICM



additional physical processes affect
properties of intracluster gas in cores

example: heating by Active Galactic Nuclei of the central
cluster galaxy in the Perseus cluster

41:33:00

X-ray emission " X-ray + radio emission

(by Chandra)

41:32:00

41:31:00

Relative Decl. (orcsec)

41:30:00

41:29:00

AGN “bubbles”

3h20m00s 3h19m50s 3h19md0s S0 0 =50
RA

Relative R.A. (orcsec)

these effects, however, appear to be confined to the core
=> outer reqions of clusters can be used to reliably
estimate their total masses




Mass — ICM temperature relation
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X-ray spectral temperature
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~10% agreement in the
amplitude between
observed and model M-Tx
relation -- improvements
are in both sim. and obs.

Scatter in M-Tx is ~20% in
mass at a given Tx - the
scatter is primarily driven
by unrelaxed systems

Unrelaxed systems have
systematically lower Tx

black pts: Simulated clusters
with cooling+SF

magenta pis: Chandra data
Vikhlinin et al. 2006 ApJ, 640, 691
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Mgy Scaled to z

E(z)%5xM 500, (Mo)

Mass — Yx relation
a new X-ray mass proxy
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Yx is an excellent
mass proxy!

scatter in Yx-M is ~8%
for both relaxed &
unrelaxed systems

and for low- & high-z
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Kravtsov, Vikhlinin, Nagai
2006, Apd, 650, 128

X-ray “pressure” = gas mass x temperature
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Mgy Scaled to z

Mass — Yx relation
comparison with observations
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Effect of turbulent gas motions on mass measurements

_T2 <dpther + dPturb)

M, —
tot(<7) Gp dr dr

Mass profile from
hydrostatic equilibrium
taking into account
turbulent pressure
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relaxed

True mass profile in
simulations

Mass profile from
hydrostatic eqiulibrium
neglecting turbulent
pressure
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cluster-centric radius in units of rg,,,



Mass — Yx relation

using mass derived from the hydrostatic equilibrium analysis
both in observations and simulations
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Dark energy constraints from the evolution of

cluster mass function

The 400 sq. deg. X-ray cluster survey (Vikhlinin et al. 2009)
Talk by A. Vikhlinin next month
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Cosmology with Sunyaev-Zel’dovich Effect

Upcoming SZE cluster surveys will produce large statistical samples
(e.g., from AMI, AMiBA, APEX, SZA to ACT, Planck, and SPT)

SZ Effect directly probes the
integrated pressure

- A1914
z=0.1712

MS1054

Cl0016
. z=0.826

z=0.5455

Simulations: Nagai 2006, also Motl et al. 2005, Hallman et al. 2007

Data: Bonamente, Joy, LaRoque, Carlstrom, Nagai, Marrone 2008
Also talk by D. Marrone on recent results from SZA.
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Probing cosmic-rays pressure with Fermi

_T2 dPther dPturb chr
+ +
Gp dr dr dr

Mot (< 1) =

Fermi will provide stringent constraints (~1%) on
the cosmic-ray protons in nearby, rich clusters

1077

] 1 IIIIIIII I IlIlIIII I IIIIIlII 1 IllIlIll I IIIIIIII I IIIII?

o _
::l decay (X,=0.1) Coma

10-8
10-°
10-10

* 10-11

IC + Brems. : \\_ h

F(E>E_. ; r<R,,,) [cm~2s-1]

1 llllllll 1 llllllll 1 llllllII 1 llllllll 1 lllllul L1l

10-12 from primary e~ \
' \
: \ \
_18 | - lllllll L1 lllllll 11 lllll"il 1 llllllll kl llllllk L1111l
102 0.1 1 10 10?2 103 104
E_. [GeV]

Ando & Nagai 2008; also
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He sedimentation in X-ray Clusters
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Solving the diffusion equations for the fully
ionized H-He plasma in the NFW potential

cluster-centric radius in units of rg,,

He sedimentation can infroduce systematic uncertainty in X-ray
measurements of galaxy clusters at the level of <5-10%.

Peng & Nagai 2008; also Chuzhoy & Loeb 1998



Summary

m Successes

» Modern cosmological cluster simulations with cooling+SF reproduce
observed thermodynamic properties of real clusters outside cores.

» Observable-mass relations of simulated clusters and recent X-ray
observations agree to about 10%.

» Robust, low-scatter mass proxies (Yx and Ysz) are accessible for
both X-ray and SZE cluster surveys.

m Problems & Challenges

» Bul, there is a remaining offset of ~10% between simulations and
observations. Likely, due to non-thermal pressure components
(e.g., turbulence, cosmic-rays, ICM plasma physics).

» Also, cluster cores are not well-reproduced in simulations.

m Future Prospect
» Upcoming cluster surveys will produce large statistical samples of
clusters (X-ray: eROSITA; SZE: ACT, AMI, APEX, Planck, SPT, SZA)
» Further advances in numerical simulations are also underway
* Larger sample of simulated clusters to study the scatter

 Detailed understanding of cluster gas physics (e.g., AGN feedback, turbulence,
cosmic-rays, ICM plasma physics)



