Galaxy-dark matter connection: a cosmological perspective

Surhud More (KICP)

Together with: Frank van den Bosch (Yale), Marcello Cacciato (HUJI), Houjun Mo (UMass), Xiahou Yang (SHAO)

Take home message

Galaxy observations can be used to constrain cosmological parameters!

Surhud More, KICP 2 RPM Seminar, LBNL

Take home message

Galaxy observations can be used to constrain cosmological parameters!

What kind of?

How?

Surhud More, KICP 2 RPM Seminar, LBNL

Outline of the talk

- Concordance cosmology: ACDM model
- Galaxy distribution
 - Observables: Galaxy abundance, galaxy clustering and galaxy-galaxy lensing
- The halo model and the conditional luminosity function
- Results: ACDM model and beyond!

Surhud More, KICP 3 RPM Seminar, LBNL

Cosmological paradigm

Surhud More, KICP 4 RPM Seminar, LBNL

Cosmological paradigm

Surhud More, KICP 4 RPM Seminar, LBNL

Galaxy-dark matter connection

HOW DO GALAXIES OCCUPY DARK MATTER HALOES?

- Kinematics of satellite galaxies
- Strong gravitational lensing
- Abundance and clustering of galaxies
- Weak gravitational lensing

Galaxy luminosity function

 Average number density of galaxies as a function of brightness.

Surhud More, KICP 6 RPM Seminar, LBNL

Galaxy clustering: the two point correlation function

$$\xi(r) = \frac{DD(r, r + dr)}{RR(r, r + dr)} - 1$$

$$\bar{n}^2 dV 4\pi r^2 dr$$

Surhud More, KICP 7 RPM Seminar, LBNL

Galaxy clustering: the two point correlation function

$$\xi(r) = \frac{DD(r, r + dr)}{RR(r, r + dr)} - 1$$

$$\bar{n}^2 dV 4\pi r^2 dr$$

Surhud More, KICP 7 RPM Seminar, LBNL

Galaxy clustering: the two point correlation function

Surhud More, KICP

RPM Seminar, LBNL

Halo model

Cooray & Sheth (2002)

 Structure in dark matter distribution

• Theorist's simplification:)

Halo model ingredients

 Abundance of dark matter halos and its clustering properties

Cosmological information

 The connection between galaxies and dark matter

Galaxy formation physics

Surhud More, KICP 9 RPM Seminar, LBNL

Dark matter distribution

Halo mass function

Halo bias function

Surhud More, KICP 10 RPM Seminar, LBNL

Inside a dark matter halo

Dark matter

Density profile, NFW

Mass dependent concentration

Surhud More, KICP 11 RPM Seminar, LBNL

Inside a dark matter halo

Dark matter

Density profile, NFW
Mass dependent concentration

Central galaxy

Sits at the center of the halo

Surhud More, KICP 11 RPM Seminar, LBNL

Inside a dark matter halo

Dark matter

Density profile, NFW

Mass dependent concentration

Central galaxy

Sits at the center of the halo

Satellite galaxies

Roughly follow the dark matter

Surhud More, KICP 11 RPM Seminar, LBNL

Conditional luminosity function

- Average number of galaxies of luminosity L living in halos of mass M
 - ullet Central CLF $\Phi(L|M) = \Phi_c(L|M) + \Phi_s(L|M)$
 - Satellite CLF
- Abundance of galaxies $\Phi(L) = \int \Phi(L|M)n(M)dM$
- Average number of galaxies in a luminosity bin

$$\langle N_c \rangle_{[L_1, L_2]}(M) = \int_{L_1}^{L_2} \Phi_c(L|M) dL$$

 $\langle N_s \rangle_{[L_1, L_2]}(M) = \int_{L_1}^{L_2} \Phi_s(L|M) dL$

Surhud More, KICP 12 RPM Seminar, LBNL

Galaxy clustering

- Galaxy pairs from the same halo
 - central-satellite
 - satellite-satellite
- Galaxy pairs from different halos
 - central-central
 - central-satellite
 - satellite-satellite

One halo central-satellite

Surhud More, KICP 14 RPM Seminar, LBNL

One halo satellite-satellite

$$\frac{1}{2}\langle N_s \rangle_M u(\vec{r}_1|M)\langle N_s \rangle_M u(\vec{r}_2|M)n(M)$$

Surhud More, KICP 15 RPM Seminar, LBNL

Pair counting 1-halo terms

- 1 halo central-satellite
- 1 halo satellite-satellite

$$\langle N_c \rangle_M \langle N_s \rangle_M u(r|M)$$

$$\frac{1}{2}\langle N_s \rangle_M u(\vec{r}_1|M)\langle N_s \rangle_M u(\vec{r}_2|M)$$

$$|\vec{r}_1 - \vec{r}_2| = r$$

Convolution!!!
Easiest to handle in Fourier space

• Total 1 halo pairs

$$\int \left[\langle N_c \rangle_M \langle N_s \rangle_M u(r|M) + \frac{1}{2} \langle N_s \rangle_M u(\vec{r}_1|M) \langle N_s \rangle_M u(\vec{r}_2|M) \right] n(M) dM$$

$$|\vec{r}_1 - \vec{r}_2| = r$$

Surhud More, KICP 16 RPM Seminar, LBNL

Two halo central-central

$$\frac{1}{2}\langle N_c \rangle_{M_1} \langle N_c \rangle_{M_2} \left[1 + \xi^{hh}(r, M_1, M_2) \right] n(M_1) n(M_2)$$

 An accurate treatment of the halo clustering: a mathematically consistent treatment of radial dependence and halo exclusion!

Surhud More, KICP 17 RPM Seminar, LBNL

Two halo central-satellite

$$\langle N_c \rangle_{M_2} \langle N_s \rangle_{M_1} u(\vec{r}_1 - \vec{r}_s | M_1) \left[1 + \xi^{hh} (|\vec{r}_1 - \vec{r}_2|, M_1, M_2) \right]$$

Surhud More, KICP 18 RPM Seminar, LBNL

Two halo satellite-satellite

$$\frac{1}{2}\langle N_s \rangle_{M_1} u(\vec{r}_1 - \vec{r}_{s_1} | M_1) \langle N_s \rangle_{M_2} u(\vec{r}_2 - \vec{r}_{s_2} | M_2) \left[1 + \xi^{hh} (|\vec{r}_1 - \vec{r}_2|, M_1, M_2) \right]$$

Surhud More, KICP 19 RPM Seminar, LBNL

Putting it all together

- Numerical simulations
 - Abundance of haloes

Cosmology sensitive

- Clustering of haloes
- Density profile of dark matter
 - Concentration-Mass relation
- Conditional luminosity function
 - Halo occupation distribution of central and satellite galaxies as a function of halo mass Galaxy formation physics

20 Surhud More, KICP

Fixed cosmology

WMAP3

$$\Omega_m = 0.27$$

$$\sigma_8 = 0.74$$

Cacciato, vdB, SM et al. 2009

Fixed cosmology

WMAP3

$$\Omega_m = 0.27$$

$$\sigma_8 = 0.74$$

WMAP1

$$\Omega_m = 0.3$$

$$\sigma_8 = 0.9$$

Cacciato, vdB, SM et al. 2009

Fixed cosmology

WMAP3

$$\Omega_m = 0.27$$

$$\sigma_8 = 0.74$$

WMAP1

$$\Omega_m = 0.3$$

$$\sigma_8 = 0.9$$

Cacciato, vdB, SM et al. 2009

Surhud More, KICP

21

RPM Seminar, LBNL

Image adapted from Wikipedia

Surhud More, KICP 22 RPM Seminar, LBNL

Surhud More, KICP 22 RPM Seminar, LBNL

$$\langle \epsilon \rangle = \gamma_t(R)$$
 $\gamma_t(R) = \frac{\bar{\Sigma}(\langle R) - \Sigma(R)}{\Sigma_{\text{crit}}}$

Surhud More, KICP 22 RPM Seminar, LBNL

Surhud More, KICP 23 RPM Seminar, LBNL

0

Galaxies with similar luminosity

Surhud More, KICP 23 RPM Seminar, LBNL

Surhud More, KICP 23 RPM Seminar, LBNL

Galaxies with similar luminosity

Signal can be predicted using CLF!

Surhud More, KICP RPM Seminar, LBNL

0

Galaxy-galaxy lensing

Cacciato, vdB, SM et al. 2009

Surhud More, KICP 24 RPM Seminar, LBNL

Model parameters

Central CLF

 $L_{\rm c}(M)$: 4 parameters, $\sigma_{\log L}$: 1 parameter

Satellite CLF

 $\Phi * (M) : 3 \text{ parameters}, \ \alpha : 1 \text{ parameter}$

Cosmology

 $\Omega_{\rm m}, \sigma_8$ free, WMAP7 priors on Ω_b, h, n_s

Surhud More, KICP 25 RPM Seminar, LBNL

Fisher forecasts

• Joint analysis is a promising way to constrain cosmological parameters SM, vdB, Cacciato et al., in prep

Surhud More, KICP 26 RPM Seminar, LBNL

Fisher forecasts

to

SM, vdB, Cacciato et al., in prep

Fisher forecasts

• Joint analysis is a promising way to constrain cosmological parameters SM, vdB, Cacciato et al., in prep

Surhud More, KICP 26 RPM Seminar, LBNL

Mock catalog tests

vdB, SM et al. in prep

Galaxy-galaxy clustering signal

Surhud More, KICP 27 RPM Seminar, LBNL

Mock catalog tests

vdB, SM et al. in prep

Galaxy matter clustering signal

Surhud More, KICP 28 RPM Seminar, LBNL

Redshift space distortions

vdB, SM et al. in prep

• The redshift space correlation function was integrated along the line-of-sight to 40 Mpc.

Sphericity assumption

SM, in prep

• Sphericity assumption is good enough to predict the two point correlation function to about 5%: however use Spherically Overdense halos!

Surhud More, KICP 30 RPM Seminar, LBNL

Results from a MCMC analysis

Cacciato, SM, vdB (in prep)

Surhud More, KICP 31 RPM Seminar, LBNL

Results from a MCMC analysis

Cacciato, SM, vdB (in prep)

Surhud More, KICP 31 RPM Seminar, LBNL

Results from a MCMC analysis

Cacciato, SM, vdB (in prep)

Surhud More, KICP 31 RPM Seminar, LBNL

Some ideas for the future!!!

- Modified gravity models: f(R) gravity
- Generalize the Einstein-Hilbert action

$$S = \int d^4x \left(\frac{1}{2\kappa} [R + f(R)] + \mathcal{L}_M \right) \sqrt{-|g|}$$

- Can mimic the effects of dark energy for specific choices of the function f(R)
- However, it has to reduce to GR on small scales to obey solar system constraints.

Some ideas for the future!!!

Modified aravity models: f(R) aravity

 However, it has to reduce to GR on small scales to obey solar system constraints.

Surhud More, KICP 32 RPM Seminar, LBNL

Take home message

Galaxy observations can be used to constrain cosmological parameters!

What kind of?

How?

Surhud More, KICP 33 RPM Seminar, LBNL

Take home message

Galaxy observations can be used to logical parameters!

Galaxy abundance
Galaxy clustering
Galaxy-galaxy lensing

How?

Take home message

Galaxy observations can be used to

Galaxy abundance
Galaxy clustering
Galaxy-galaxy lensing

logical parameters!

Halo occupation modeling with CLF!!!

33

KPM Seminar, LBNL

Word cloud

Thank you!!!

Surhud More, KICP 34 RPM Seminar, LBNL