2022-01-18, Berkeley Cosmology Seminar

Studying the Early Universe with Radio Measurements of the Global 21-cm Signal Raul Monsalve

Credit: NASA / WMAP Team

1) Introduction

21-cm Cosmology

- Brightness temperature measured by radio-telescope captures the interaction of these quantities as a function of redshift.
- We can study Spatial Fluctuations of the brightness temperature or its Sky-Averaged (or Global) component.

Global Evolutions

Emission at 21 cm from Hydrogen Atom

Change in ground state spin alignment

Parallel spins

Upper ground state (more energetic)

Anti-parallel spins Lower ground state (lower ground state)

Spin Temperature (T_S)

Intensity of 21-cm radiation is expressed as a "Spin Temperature"

Relative abundance of ground states of hydrogen atoms

$$\frac{n_{\text{upper}}}{n_{\text{lower}}} = 3 \cdot exp\left(-\frac{h \cdot v_{21\text{cm}}}{k_{\text{b}} \cdot \boldsymbol{T}_{\text{S}}}\right)$$

 $v_{21cm} = 1420 \text{ MHz}$

h: Planck constant

- $k_{\rm b}$: Boltzmann constant
- http://www.cv.nrao.edu/course/astr534/HILine.html

Spin Temperature (T_S)

During Cosmic Dawn:

$$T_{\rm S}^{-1} \approx \frac{T_{\rm R}^{-1} + x_{\rm c} T_{\rm K}^{-1} + x_{\alpha} T_{\alpha}^{-1}}{1 + x_{\rm c} + x_{\alpha}}$$

- $T_{\rm S}$: spin temperature
- $T_{\rm R}$: background radiation temperature
- $T_{\rm K}$: IGM kinetic temperature
- T_{α} : Lyman- α background temperature
- $x_{
 m c}$, x_{lpha} : coupling factors

Global Evolutions

Adapted from Greenhill 2018, Nature, 555, 38

Global 21-cm Brightness Temperature

High redshift \Box Low frequency

$$v_{\rm obs} = \frac{v_{\rm rest\,frame}}{(1+z)} \qquad 1420 \,\,{\rm MHz}$$

200 MHz
$$z = 6$$

50 MHz $z = 28$

Standard Prediction for Global 21-cm Signal

Understand Nature and Timing of First Sources on Large Scales

Dark Ages signal does not depend on astrophysics

From Pritchard & Loeb (2011)

Global 21-cm Experiments

PRI^ZM (McGill, Sievers et al.)

SARAS 3 (RRI, Subrahmanyan et al.)

LEDA (Harvard, Greenhill et al.)

CTP (NRAO, Bradley et al.)

High-Z (CMU, Peterson et al.)

REACH (Cambridge, De Lera Acedo et al.)

EIGSEP

(UC Berkeley, Parsons et al.)

2) EDGES

EDGES

Experiment to Detect the Global EoR Signature

Judd Bowman (PI) Alan Rogers Raul Monsalve Steven Murray John Barrett Colin Lonsdale Thomas Mozdzen Nivedita Mahesh Leroy Johnson Titu Samson David Lewis Akshatha Vydula Peter Sims

Western Australia

Murchison Radio-astronomy Observatory (MRO) Radio-Quiet Site

EDGES 2 Instruments

EDGES Instrument Block Diagram

EDGES Low-Band

Low-Band Ground Plane

Extended Ground Plane: Central Square: 20m x 20m 16 Triangles:

Absorption Feature in EDGES Low-Band Data

Summary of Detection

Bowman, Rogers, Monsalve, Mozdzen, Mahesh 2018, Nature, 555, 67

Two Instruments / Several Configurations

Bowman, Rogers, Monsalve, Mozdzen, Mahesh 2018, Nature, 555, 67

Sensitivity to Possible Calibration Errors

Error source	Estimated uncertainty	Modelled error level	Recovered amplitude (K)
LNA S11 magnitude	0.1 dB	1.0 dB	0.51
LNA S11 phase (delay)	20 ps	100 ps	0.48
Antenna S11 magnitude	0.02 dB	0.2 dB	0.50
Antenna S11 phase (delay)	20 ps	100 ps	0.48
No loss correction	N/A	N/A	0.51
No beam correction	N/A	N/A	0.48

Absorption Amplitude for Various GHA

Galactic Hour Angle (GHA)	SNR	Amplitude (K)	Sky Temperature (K)
6-hour bins		\bigcap	
0	8	0.48	3999
6	11	0.57	2035
12	23	0.50	1521
18	15	0.60	2340
4-hour bins			
0	5	0.45	4108
4	9	0.46	2775
8	13	0.44	1480
12	21	0.57	1497
16	11	0.59	1803 Total temperatur
20	9	0.66	3052 varies by a factor
			up to 3.

Bowman, Rogers, Monsalve, Mozdzen, Mahesh 2018, Nature, 555, 67

Parameter Estimates

From All Cases Processed

Parameter	Best Fit	Uncertainty (3 σ)
Amplitude	0.5 K	+0.5/-0.2 K
Center	78 MHz	+/-1 MHz
Width	19 MHz	+4/-2 MHz
Flatness	7	+5/-3

Larger amplitude than allowed by standard models, even considering uncertainties

How to Explain Deep Absorption?

BRIEF COMMUNICATIONS ARISING

Concerns about modelling of the EDGES data

ARISING FROM J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J. Mozdzen & N. Mahesh Nature 555, 67–70 (2018); https://doi.org/10.1038/ nature25792

A Ground Plane Artifact that Induces an Absorption Profile in Averaged Spectra from Global 21-cm Measurements - with Possible Application to EDGES

Richard F. Bradley, Keith Tauscher, David Rapetti, and Jack O. Burns

Addressing Concerns

Null Tests (cosmological feature should not be found)

- 1) Measuring noise sources that produce a flat spectrum.
- 2) Measuring noise sources that produce a spectrum **resembling the diffuse foregrounds**.

<u>Tests Addressing Antenna Beam Effects (cosmological feature should be found)</u>

- 1) Using **smaller Mid-Band antenna** on the Low-Band ground plane.
- 2) Using rotated Low-Band antenna 45 degrees relative to ground plane and sky.

Verification Using ~300K Passive Noise Sources

Verification with EDGES Mid-Band

Low-Band

Mid-Band (~25% smaller)

Same Ground Plane as Low-Band

Preliminary Mid-Band Results

Data taken in 2018, 2020, and 2021

Verification with Rotated Low-Band

Low-Band

45-deg Rotated Low-Band

Preliminary Rotated Low-Band Results

Recent SARAS 3 Result

SARAS 3 on a lake in India

Singh et al. (2021)

https://arxiv.org/abs/2112.06778

- 55-85 MHz
- 30-MHz band modeled with 7 foreground terms + 1 scale term for best-fit EDGES signal

90% confidence range for scale, considering reported SARAS systematics.

90% confidence range for scale, considering systematics and range of EDGES signals.

EDGES-3

- 1) **Improved** hardware.
- 2) More **portable design**.
- 3) Electronics within antenna.
- 4) Prototype observed from **Oregon**, **USA**.
- 5) Plan to observe from Australia but also other sites, potentially in North America.

3) MIST

Mapper of the IGM Spin Temperature (MIST)

Nominal Observation Sites

McGill Arctic Research Station

Atacama Desert

RFI in Arctic (Trip in 2019)

RFI in Atacama Desert (Trip in 2015)

Block Diagram

- Amplifiers, filters
- RF switches
- Noise standards

- ADC/FPGA
- VNA
- Control computer
- 20W Power consumption

Instrumental Developments

2 Instruments Built

Antenna EM Simulations

Blade Dipole, Panel Size 60cm x 120cm

Design Objective 3:1 bandwidth ratio, 40-125 MHz

Antenna Beam Model

Receiver Parameters

Efficiency

Test Deployment in August 2021

Uapishka Natural Reserve

Sample Antenna S11

Site 1

Occupation for Analog RFI

Sample PSD Antenna

FΜ

Status

- Analyzing data from Uapishka to maximize its usefulness
- Implementing refinements to the instrument from lessons learned at Uapishka
- Eliminating low-level self-RFI and effects from boxes with electronics under antenna
- Implementing solar power system following tests at Uapishka

The McGill Arctic Research Station

Looking forward to observe from the Arctic this summer !

Summary

- 1) Analyzing EDGES data from 2018-2022 to determine presence of absorption feature in new instrumental configurations. Considering wide range of options when interpreting spectral structure.
- 2) **Developing EDGES-3**, to observe as soon as possible from Australia and North America.
- 3) **MIST experiment is almost ready** to be taken to remote places for sky measurements after implementing lessons learned from Uapishka.

Thank you Very Much