A new era in studies of the cosmic dawn: constraints from galaxy surveys, redshifted 21-cm signals, and the extragalactic background light

Jordan Mirocha (McGill \rightarrow NASA/JPL)

based on **JM** & Furlanetto (arXiv:2208.12826)

Institut Spatial de McGill

Plan for today

- 1. Hubble view of high-z galaxies. How do we currently understand galaxy evolution at $z \gtrsim 4$?
- 2. First observations w/ JWST. Can we accommodate early measurements in context of HSTera constraints?
- 3. What else is going on? Current / near-future input from EDGES, HERA, Roman, SPHEREx.

from Lidz+ 2009

Part I. High-z Galaxies (pre-JWST)

Big picture motivation

- Star formation efficiency (SFE) and related stellar-mass-halomass relation strong functions of halo mass.
- Case at high-z not so clear. Does it evolve?
- Low-mass regime virtually unconstrained.
- What does this tell us about feedback?

Big picture motivation

What we know: counts and colors at z~4-8

[just histogram of galaxies vs. mag]

[know more than this, but this is easiest stuff for theorists to use]

Semi-empirical SFE model

JM, Furlanetto, & Sun 2017

Assume we know:

- halo mass function, dn_h/dM_h .
- halo mass accretion rates (MAR), \dot{M}_h .

Assume star formation tracks MAR.

$$L_{\rm UV} \propto {\rm SFR} = f_* \left(\frac{\Omega_{\rm b}}{\Omega_{\rm m}}\right) \dot{M}_{\rm h}$$

Can fit for f_* parameters via fitting rest-UV luminosity functions (UVLFs).

 $\frac{dn_{\rm gal}}{dM_{\rm UV}} = \frac{dn_h}{dM_h} \frac{dM_h}{dM_{\rm UV}}$

Semi-empirical dust model

Avoid IRX- β :

$$L_{\lambda} = L_{\lambda,0} \exp\{-\tau_{\lambda}\}$$
$$= L_{\lambda,0} \exp\{-\rho_d R_d \kappa_{\lambda}\}$$
$$= L_{\lambda,0} \exp\{-(3M_Z f_{dtmr}/$$

Relate dust production to star formation via f_{dtmr} parameter and invoke dust scale length, R_d, to get column density.

Synthesize SED of each model galaxy, redden, and "observe" through HST filters relevant for redshift.

JM, Mason, & Stark 2020

 $/4\pi R_d^2)\kappa_\lambda$

This looks like a pt. src w/ spherical screen, but we can also think of this as some *effective* dust column density to get away from geometrical interpretation.

Model calibration

JM, Mason, & Stark (2020), see also, e.g., Sun & Furlanetto (2016), Tacchella+ (2018), Behroozi+ (2019), +many others

Model calibration

JM, Mason, & Stark (2020), see also, e.g., Sun & Furlanetto (2016), Tacchella+ (2018), Behroozi+ (2019), +many others

Universal SFE & dust results

JM, Mason, & Stark 2020

note: solid (dotted) curves assume double power-law (power-law) R_d

-1.6-2.4 -2.8 -1.6-2.4 -2.8 -1.2-1.6 -2.0 g -2.4 -2.8 -1.2 -1.6 -2.0 a -2.4

 $\beta_{\rm hst}$ 0.2–

Side note: LAEs too?

JM, Mason, & Stark 2020

So: SFE, R_d, f_{dtmr}, need not evolve to match UVLF & color evolution...

...but shouldn't they evolve?

Feedback: SFE=SFE(z)

Balance star formation, inflow, outflow:

$$\dot{M}_* = \dot{M}_b - \dot{M}_w$$

see, e.g., Furlanetto, **JM**+ 2017, and most semi-analytic models (e.g., Somerville+ 2012, Dayal+ 2013, ...)

 $\frac{1}{2}\dot{M}_w v_{\rm esc}^2 = \dot{M}_* \epsilon_k \omega_{\rm SNe}$

Tension in Physical Models

Tension in Physical Models

Rapid contraction \rightarrow over-reddening recall: $R_{\rm vir} \propto M_h^{1/3} (1+z)^{-1}$ $f_* \propto M_h^{0.7} (1+z)^{1.0}, R_d \propto M_h^{0.50} (1+z)^{0.0}$ -1.2 -1.6 -2.0 Physic -2.4 $z \sim 4$ -2.8 -1.2-1.6Bhst 0.7--2.4z~5 -2.8 -1.2-1.6B^{1.0} -2.0 *z* ~ 4 -2.4 z~6 *z* ~ 7 -2.8 -1.2 $z \sim 10$ -1.6β^{1:0} -2.0 -2.4 Z~ -2.8 -22 -22 -20 -18 -20 -18 -16-24 -16-24 $\langle M_{\rm UV} \rangle$

Remedies

Invoke redshift evolution in the dust opacity?

(see also, e.g., Vogelsberger+2019, Qiu+ 2019) **JM** 2020

In this work: allow M_h or redshift dependent f_{dtmr} and f_{duty}:

$$f_{\rm dtmr} = f_{\rm dtmr,10} \left(\frac{M_h}{10^{10} M_{\odot}}\right)^{\alpha_{\rm dtmr}} \left(\frac{1+z}{5}\right)^{\gamma_{\rm dtmr}}$$
$$f_{\rm duty} = f_{\rm duty,10} \left(\frac{M_h}{10^{10} M_{\odot}}\right)^{\alpha_{\rm duty}} \left(\frac{1+z}{5}\right)^{\gamma_{\rm duty}}$$

Force SFE to energy-regulated case. Force R_d to track R_{vir}.

Fit Results

How different are these three models "under the hood"?

Constraints on properties of galaxies

JM 2020

Each scenario here can fit all UVLFs and colours — need more (and different) data!

duty cycle

dust to metal ratio

Clustering signal

How to differentiate models, given ease with which UVLFs and colors can be matched?

JM 2020

data from Barone-Nugent, Trenti+ (2014)

Part II. First wave of JWST results

Definitely learning if all models are wrong!

Some of the first high-z galaxies from JWST...are there too many? Are they too **bright?** Are they all interlopers?

see also Donnan+, Harikane+, interpretations from Mason+, Ferrara+, Zavala+, Naidu+ ...

Solid: energy-regulated f_* model, with dust and 0.3 dex scatter in SFR(M_h) Dashed: 'universal' f_* model, **no dust** or scatter in SFR(M_h)

Agreement w/ HST-based models at $z \leq 10$

Solid: energy-regulated f_* model, with dust and 0.3 dex scatter in SFR(M_h) Dashed: 'universal' f_* model, **no dust** or scatter in SFR(M_h)

Abundances high, ~constant at $z \ge 10$

Abundances ~constant by chance?

 $L_{\rm UV} \propto {\rm SFR} \propto {\rm f}_* \times {\rm MAR}$

Masses, rest-UV colors, ages ~OK?

Need flat f_* , high scatter, <u>and</u> dust

Many moving parts here:

- Scatter 'props up' bright-end.
 - see also Mason+
- Flat f_* slows UVLF evolution.
 - see also Inayoshi+
- Without dust, UV too blue!
 - Still need some dust?
 - Or, *very* rapid disappearance of dust (see Ferrara+) and, e.g., strong nebular continuum (e.g., Endlsey+, Topping+)? More complex SFHs (e.g., Kelson+, Tacchella+)?

Need flat f_* , high scatter, <u>and</u> dust

Many moving parts here:

- Scatter 'props up' bright-end.
- Flat f_* slows UVLF evolution.
- Without dust UV too blue!
- Adding dust:
 - Reddens colors
 - Requires boost in f_* , drives ages and masses up too.

Constant f_* and scatter: package deal?

- General interpretation of steep decline in f_* at low M_h is that feedback is strong in lowmass galaxies (shallow potentials).
- Only works if feedback injected quickly relative to halo growth timescale.
- At high-z, t_{SN} ~ t_{dyn}, could result in failure of feedback, overshoot in SFR in ~2-3x bursts.
- Does not help with the many very bright galaxies detected with JWST 'out of the box,' which suggest ~1 dex scatter in SFR(M_h). This model naturally yields ~2-3x, more to think about.

see also, e.g., Faucher-Giguère (2018), Orr+ (2019).

Interlopers?

- For M_{UV} ~ -22, ~Gyr ages of interlopers, M_{h,i}/M_{h,t} ~
 1 (see Fig. 2 in paper).
 - Interlopers / targets evolves very rapidly at $z \gtrsim 10$ for massive halos.
- This is, of course, a known challenge (see, e.g., Zavala+, Rodighiero+, Glazebrook+, McKinney+).
- Key point here: how well do we understand the prior volume in SED fitting? Prior on individual objects (very reasonably uninformative), wrong for whole population.
- Fujimoto+ (today; 2301.09482), ~90% confirmation rate at z~9 (CEERS).

⊦).

Part III. 21-cm, EBL, crosscorrelation opportunities

Berkeley News Research - People - Campus & community

RESEARCH, SCIENCE & ENVIRONMENT, TECHNOLOGY & ENGINEERING

Were galaxies much different in the early universe?

By Robert Sanders, Media relations | JANUARY 24, 2023

The HERA radio telescope consists of 350 dishes pointed upward to detect 21-centimeter emissions from the early universe. It is located in a radio-quiet region of the arid Karoo in South Africa. (Photo credit: Dara Storer, 2022)

Constraints on L_X/SFR from HERA

HERA Collaboration et al. (2022a, 2023)

Implications of EDGES for early galaxies

EDGES needs a lot of star formation relative to HST/UVLF-based predictions

JM & Furlanetto (2019)

Flattened SFE here phenomenological, allowed to vary in fit.

PopIII via near-infrared fluctuations?

Sun, **JM**+ (2021)

Extreme **PopIII** star formation models in principle detectable with **SPHEREX!**

Turn-over in galaxy luminosity function via NIRB?

JM, Liu, & La Plante (2205.14168)

Cox, Jacobs, & Murray 2022

HERA x SPHEREx?

- Outlook for HERA x SPHEREx Ly-a not great, but HERA x CDIM more promising (Cox+ '22; left).
- HERA cannot leverage SPHEREx deep fields at poles...maybe LoFAR would have better luck?
- SKA x CDIM very promising (see Feng+ 2017, Heneka & Cooray '21)

21-cm x galaxies

21-cm

galaxies

21-cm & wide-field surveys

La Plante, **JM**+ (2205.09770)

HERA x Roman Forecast

La Plante, **JM**+ (2205.09770)

Summary

- Overabundance of $z \gtrsim 10$ JWST galaxies: not a single quick fix for models.
 - Unlikely to be due to shot noise or cosmic variance.
 - M_h -independent f_* does help to slow evolution in UVLF.
 - Still need ~1 dex of scatter in SFR(M_h) to 'prop up' bright end of UVLF.
 - <u>M_h-independent f_* and scatter sign of bursts</u> (e.g., Furlanetto & **JM** 2021)?
- Dust-free model still under-produces UVLF if anchored to $z \leq 8$
 - <u>Need dust to get UV colors right!</u> Helps with ages and masses indirectly.
 - Less dust needed than at $z \leq 8$, but non-negligible (though complex SFHs or strong) nebular continuum might work too; see, e.g., Kelson+, Tacchella+, Topping+, Endsley+)

