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Original 
planned 
release 
date
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release date

Dec 15

Today

Caveat: I can show you 
anything shown at the 
conferences. For a few plots I 
will have to use 2013 results, 
but no major impact to this talk 
otherwise. 

Data 
comes in

Diligent work



  

Outline

• Planck

• Number of neutrino-like species �eff
– BAO and H0

– Damping and acoustic oscillation phase shifts

– Constraints on axions and axion-like particles (ALPs)

• Sum of neutrino masses Σ�ν
– Gravitational lensing



 

What is Planck?



  

Planck in 2009



  

Planck in 2009



  

LFI: 30, 44, 70 GHz



  

HFI: 100, 143, 217, 353, 545, 853 GHZ
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Planck-HFI 100 GHz

-30μK 30μK-30μK 30μK

-300μK 300μK

Note: Q/U no longer smoothed, so most of what you see is galaxy + noise
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Planck-HFI 143 GHz
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Planck-HFI 217 GHz
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Planck-HFI 353 GHz
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Beautifully Consistent Data

70 GHz70 GHz 100 GHz100 GHz 100 GHz – 70 GHz100 GHz – 70 GHz

Different detector technologies, different systematics



  



  

Let’s decompose into band-
limited maps and compare those
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large-scale modes small-scale modes intermediate
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Comparison with WMAP:  
what’s new?
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Need:
●Non-equilibrium recombination
●Neutrino interactions
●Helium (BBN consistent)
●Etc...



  

●Double the observing time
●More sky
●Better control of systematics



  

Previous TE and EE measurements (Crites et al. 2014)



  

Perturbations in the tightly coupled photon-baryon 
plasma are just propagating “sound” waves governed by:

(Caveat: ignores gravitational potentials and electron mass)



  

Perturbations in the tightly coupled photon-baryon 
plasma are just propagating “sound” waves governed by:

Density
Velocity

(Caveat: ignores gravitational potentials and electron mass)

Smaller k Medium k Larger k

Consider Fourier modes projected 
onto the last scattering surface:
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Electrons see dipole
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“E mode” polarization pattern



  

“E mode” polarization pattern



  

“B mode” polarization pattern (can't be sourced by density/velocity perturbations)

“E mode” polarization pattern



  

“B mode” polarization pattern (can't be sourced by density/velocity perturbations)

Polarization maps are just linear 
combinations of the above patterns, e.g.:

“E mode” polarization pattern



  

“B mode” polarization pattern (can't be sourced by density/velocity perturbations)

● E modes and T modes out of phase
● With E modes, we are learning about 
velocities

Polarization maps are just linear 
combinations of the above patterns, e.g.:

“E mode” polarization pattern



  

Previous TE and EE measurements (Crites et al. 2014)



  



  

However, there are low-level systematics (mostly T->P 
leakage) in the polarization data whose solution was not fully 
tested in time for 2014.

The TT results are robust. The TE,EE results are more 
tentative and we don't quote them in our “baseline” results.  



  

Summary of 2014 Results

• ΛCDM still consistent with the data, no clear preference 
for extensions

• Mean value for τ (optical depth to reionization) shifts lower 
by 1σ compared to WMAP

• Power spectrum preference for low H0 & high σ8 persists

• Some dark matter interpretations of the 
AMS/Fermi/Pamela excess are tentatively ruled out

• 40σ detection of CMB lensing, 715 new SZ clusters, etc...

• Cosmic Neutrino-(like) Background

This talk



  

Outline

• Planck

• Number of neutrino-like species �eff
– BAO and H0

– Damping and acoustic oscillation phase shifts

– Constraints on axions and axion-like particles (ALPs)

• Sum of neutrino masses Σ�ν
– Gravitational lensing



  

All Aspects of Cosmology are 
Touched by the Planck Results

• BAO-determined distance-redshift relation
• SDSS matter power spectrum
• Deep Lens Survey cosmic shear power 

spectrum
• Other CMB measurements (e.g. WMAP, 

SPT, and ACT)
• Cepheids + SNe for determining H0

• CFHTLS cosmic shear power spectrum
• σ8 inferred from cluster counts

*Assuming the CDM model 

Observation-related Examples: 

Consistent*

Some tension*
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SDSS-BOSS:

Image credit:  Eric Huff (BOSS, SPT)

Planck:



  

Riess et al. 2011 (68%)
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Planck2013+WP LCDM

● Good agreement with BOSS BAO
 2.4σ tension with Riess et al. H0

BOSS BAO, Riess et al. (2011) H0 and Planck



  

Riess et al. 2011 (68%)
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● Update to 2014

BOSS BAO, Riess et al. (2011) H0 and Planck
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●More conservative Hubble prior?

BOSS BAO, Riess et al. (2011) H0 and Planck

Efstathiou 2014 (68%)
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BOSS BAO, Riess et al. (2011) H0 and Planck



  

Planck+lowP LCDM+Neff
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BOSS BAO, Riess et al. (2011) H0 and Planck

LCDM:



  

Outline

• Planck

• Number of neutrino-like species �eff
– BAO and H0

– Damping and acoustic oscillation phase shifts

– Constraints on axions and axion-like particles (ALPs)

• Sum of neutrino masses Σ�ν
– Gravitational lensing
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How does measuring these two scales 
lead to an Neff constraint?

• Physics is remarkably simple, laid out in Hou et al. (2013), 
Bashinsky & Seljak (2004), Hu & White (1997)
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How does measuring these two scales 
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• Physics is remarkably simple, laid out in Hou et al. (2013), 
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Moon, to scale

Neff affects the ratio of sound horizon to diffusion scale

Neff=2 
simulated 
CMB map

To scale



  

Moon, to scale

Neff affects the ratio of sound horizon to diffusion scale

To scale



  

Light Degrees of Freedom



  

Data points: Planck 2013 data

2nd peak

Slide: Zhen Hou



  

2nd peak

Slide: Zhen Hou

adjust Yp to keep this fixed

Data points: Planck 2013 data



  

CMB & BBN in great agreement

D/H measurements



  

Outline

• Planck

• Number of neutrino-like species �eff
– BAO and H0

– Damping and acoustic oscillation phase shifts

– Constraints on axions and axion-like particles (ALPs)

• Sum of neutrino masses Σ�ν
– Gravitational lensing



  

Constraints on axions and ALPs

Neutrino decoupling BBN sensitivity to N
eff

CMB sensitivity to N
eff

● The CMB and BBN can jointly probe scenarios where 
particles decay in between the two epochs.
● We consider a generic particle, called an axion-like 
particle (ALP) which can decay to two photons. 

(Millea, Knox, and Fields 2014, in prep)



  

Axions and axion-like particles (ALPs)

• ALPs are a general class of particles with two free parameters: �ϕ and τϕγ 
– Typical in theories with SSBs, e.g. string axiverse, etc.. 

• Axions are a type of ALPs where �ϕγ and �ϕ are related 

– Well motivated theoretically to solve the strong CP problem.

• Relevant axions and ALPs here are heavy compared to  “invisible” 
axion models 

– �ϕ ~ 1 MeV
– τϕγ ~ 1 sec
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Two-photon interaction
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Two-photon interaction

Primakoff Process

scale factor, a

H(a)
ra

te
 [

1/
tim

e]

Reaction is fast when 



  

Primakoff fast

Two-photon fast

In-equilibrium decay:

Primakoff fast Two-photon fast
Decoupled

Out-of-equilibrium decay:



  

=2.44

=3.046

<2.44



  
“MeV-ALP window”

Previous cosmological 
constraints from 
Cadamuro & Redondo 
(2012) + collider + beam 
dump

Two axion 
models



  

Updates:
● Planck 2013
● Cooke et al. 2014 D/H
● Aver et al. 2013 Yp
● KEKB collider
● More accurate spectral 
distorition calculation

Two axion 
models

“MeV-ALP window”
No more...



  

Can have 4 or 5 
neutrino-like 
species initiallyDiluted down 

to ~3 by CMB 
epoch 

Entire mass range will be tested 
by SUPER-KEKB in the future

Unless...



  

2nd peak

Slide: Zhen Hou
Data points: Planck 2013 data



  

2nd peak

Slide: Zhen Hou
Data points: Planck 2013 data



  

Data points: Planck data

Phase shift appears to be contributing to 
Planck constraint  

Slide: Zhen Hou



  

Gravitational potentials

● Neutrino perturbations propagate at a different speed, which cause a 
phase shift in the acoustic oscillations.

(Follin, Knox, Millea, and Pan 2014, in prep)

For the first time, we directly 
measure this phase shift:  

(A similar test of neutrino perturbations 
as constraints on cvis and ceff)

Neutrinos → potentials → photons



  

Outline

• Planck

• Number of neutrino-like species �eff
– BAO and H0

– Damping and acoustic oscillation phase shifts

– Constraints on axions and axion-like particles (ALPs)

• Sum of neutrino masses Σ�ν
– Gravitational lensing



  

Slide: Duncan Hanson



  

Two ways to analyze lensing with Planck

Lensing potential reconstruction The smoothness of the temperature 
power spectrum

● Beginning with the Planck 2013 results, we inferred 
neutrino mass dominantly through their effect on lensing



  

Tension persists in 2014 between the 
amount of lensing measured the two.



  

This manifests as a loosening of neutrino 
mass constraints upon addition of lensing 
reconstruction data. 

Minimum from neutrino oscillations



  

Conclusion
Neutrino number constraints 
from damping and phase shifts.

MeV axion ruled out, or maybe plays a 
role in a more speculative scenario?

Neutrino mass constraints from lensing.

LCDM survives Planck 2014. Some hints of 
extensions in combination with other probes.



  



  

Extra slides





Forecast from SNOWMASS



  

Gravitational Lensing

Slide: Duncan Hanson



  

Gravitational Lensing

Slide: Duncan Hanson



  

Slide: Duncan Hanson



Neff and mnu



  

CMB Polarization and Lensing 
 Reconstruction

SPT-3G:  A proposed 2500 
sq. deg. Survey with a 3rd-
generation polarization-
sensitive focal plane.  

Enabling a deflection angle 
power spectrum 
measurement as forecasted 
here and

(m) = 0.06 eV



  

A curiosity:  Low-L tension with LCDM 

~ 3 sigma low relative to Planck LCDM  

WMAP
WMAP+(no L<30 TT)

Planck and WMAP in the 
2<L<50 region



  

BOSS BAO, Riess et al. (2011) H0 and Planck LCDM

 Planck is in excellent agreement with BAO measurement, 
discrepant with Riess et al. H0



  

Riess et al. (2011)

Freedman et al. (2012)

Expansion rate today



  

The deflection angle power 
spectrum



  



  

Consistency Tests Within Same Frequency

Null Tests



  

Consistency Tests Between Different 
Frequencies

 In units of μK, the CMB is the same at all frequencies
 This is a critical tests of galactic foreground cleaning, 

extra-galactic foreground modeling, and transfer 
functions



  



  /dipole

We derive, in multiple ways, a =v/c 
that is consistent in magnitude and 
direction with what’s required to 
explain the dipole.  

217 Component along 
dipole direction

Components along two 
directions perpendicular 
to the dipole direction



  

No Primordial Non-Gaussianity, just as 
expected from “slow-roll” inflation

Non-zero!

But some signal expected 
due to a 2nd-order effect of 
late-time evolution (not 
primordial)

fNL
local = 2.7 +/- 5.8

After subtraction of late-
time effect:

fNL
local is a phenomenological measure of non-Gaussianity



  

> 5 detection of scale dependence 
of primordial fluctuations ==> time 

dependence during inflation

Best-fit  scale-invariant 
(ns =1) model



  

Note the offset between Planck/WMAP starting 
around the first peak. There is an entire Planck 
paper devoted to this (which we will discuss). 



  

Here ACT/SPT/Planck 
are all sample variance 
limited but Planck has 
much larger sky 
coverage



  

Finally, at around l=2000, 
ACT/SPT become a 
tighter constraint because 
their beam is smaller



  
Slide from B. Benson
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  Slide from B. Benson



  Slide from B. Benson



  



  

PIXIE

An Explorer class 
mission aimed at 
inflation B modes 
(Kogut et al.)

400 channels over 2.5 
decades in frequency



  

Spectral 
Distortions

http://arxiv.org/pdf/1304.6121.pdf

J. Chluba



  

68% confidence prediction of 
LCDM given WMAP9 data

LCDM makes a very precise prediction



  



  



  



  



  CDM is a good fit!



  CDM is a good fit!

• We need:
– Neutrinos
– Neutrino “cooling”
– Helium (BBN consistent)
– Non-equilibrium recombination
– Gravitational lensing



  

Galaxy

Galaxy cluster

SPT Collaboration

Resolved foregrounds:

To scale

Possible contamination affecting 
damping: unresolved foregrounds



  

Galaxy

Galaxy cluster

SPT Collaboration

(Noise-free simulation)Resolved foregrounds:

Unresolved foregrounds:

To scale

Possible contamination affecting 
damping: unresolved foregrounds



  

SPT highL
Planck
Planck+highL

correlation coefficient ~ .5

potential for 25% tighter sigma

Adding “highL” to help constrain foregrounds



  

Consistency with other CMB experiments

• Planck and WMAP are consistent 
(except an overall “calibration”)

• Planck and SPT are consistent

• There are seemingly large differences 
between parameters from the three, but 
there's no evidence of any systematics.
– Therefore one should combine them all, in 

which case Planck tends to dominate the 
result. 



  

Planck-SPT consistency

SPT team cross-corelated 
Planck maps with SPT maps 
on the SPT patch of sky



  

• There are differences between 
Planck and WMAP that look 
something like a 2.5% rescaling

WMAP9
Planck

Planck-WMAP 
consistency



  

The 2.5% difference is absorbed 
almost entirely by the amplitude

• There are differences between 
Planck and WMAP that look 
something like a 2.5% rescaling

WMAP9
Planck

Parameters from L<800

Planck-WMAP 
consistency



  

What at L>800 is causing Planck 
LCDM parameter shifts?

• Its lensing

• This is going to be very important for 
the Σmν constraint



  

Outline
• Planck

• CDM, the standard model of cosmology, passes a 
precision test

• Consistency with other cosmological probes

– BAO and H0

– WMAP and SPT

• Neutrino physics with Planck
– Damping and phase shifts → Number of relativistic d.o.f

– Gravitational lensing → Sum of neutrino masses



  

Removing lensing information send Planck 
parameters back to WMAP 

Planck LCDM
WMAP LCDM
Planck LCDM+Alens



  

Planck+WP LCDM best-fit
Planck+WP LCDM+Alens best-fit
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Planck+WP+highL (AL)

Lensing info removed

Lensing info from power 
spectrum included



  

Lensing info removed

Lensing info from power 
spectrum included

0.0 0.4 0.8 1.2 1.6 2.0
Σmν[eV]
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0.2
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0.8

1.0
P
/P

m
ax

Planck+WP+highL

Planck+lensing+WP+highL

Planck+WP+highL (AL)

Lensing info from power 
spectrum and lensing 
reconstruction included



Massive neutrino impact on 
BAO-H0-CMB 



  



  

Galactic Cleaning Cross-Check 

• For the power 
spectrum analysis we 
use frequency maps 
which we clean in two 
ways

– Model the power 
spectrum of the 
galaxy and subtract 
it (2013, 2014 
baseline)

– Subtract a high 
frequency map 
(“Mspec", new in 
2014 for cross 
check since we use 
more sky)



  

Mspec (map cleaning)
Plik (2014 baseline)

Top row: Difference between 
TT spectrum and CMB best-fit

Bottom row: after subtracting the foreground spectrum as well

Excellent power spectrum (and also cosmological parameter) agreement.
=> Galactic dust cleaning is under very good control. 



  

TE & EE systematics

• The polarization 
power spectra are not 
yet sufficiently well 
tested to use in the 
main analysis.

• There are low-level 
systematics largely 
from to T->P leakage 
due to beam 
mismatch.

• This will be fixed for 
2015

TE spectrum – best-fit CMB (from TT)



  



  

Outline

• Planck

• CDM, the standard model of cosmology, passes 
another precision test

• Hands on with the Planck data

• Number of neutrino-like species �eff
– BAO and H0

– Damping and acoustic oscillation phase shifts

– Constraints on axions and axion-like particles (ALPs)

• Sum of neutrino masses Σ�ν
– Gravitational lensing
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Cosmological Model
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(highly uncertain)
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Inflation

Density fluctuations created that 
lead to observed CMB anisotropy.
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The six-parameter CDM model

Governs Spectrum of 
Primordial fluctuations Matter Content

Optical depth to 
reionization



  

The six-parameter CDM model

Governs Spectrum of 
Primordial fluctuations Matter Content

Optical depth to 
reionization

Extensions



  



  

The orbitThe orbit
Planck makes a map of the full sky every ~6 months.
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