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PUTTING INFLATION 
TO THE TEST:

1) WHAT 
DRIVES 
INFLATION? 

2) DID 
INFLATION 
HAPPEN?
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WMAP V BAND
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0.965 ±0.0016
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BICEP COLLABORATION 2014
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NGS
• Or absence thereof (KSW)

• And many others. In particular:

• Very low frequencies (modal expansion)

f local

NL

= 2.7± 5.8

f equil

NL

= �42± 75

fortho

NL

= �25± 39

PLANCK COLLABORATION 2013

NON-GAUSSIANITIES
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WHAT WE KNOW
• Fluctuations we observe are: 

• small:

• statistically isotropic:

• Gaussian: 

• nearly scale invariant: 

• Correlated (over super horizon 
sales) 

• predominantly scalar: 

�T/T = 10�5

fNL = 0

P (k) = P

hXY ik<aH 6= 0

r = 0?

P (~k) = P (k)
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WHAT DRIVES 
INFLATION? 

DID INFLATION 
HAPPEN?

• Motivation for features

• Results from Planck

• Discussion

         

• Inflation consistency condition

• Results from Planck/BICEP/
LIGO/PTA/BBN

• Discussion
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PLANCK COLLABORATION 2013

The Universe Pre-Bicep
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PLANCK COLLABORATION 2013

planck+bicep2+BAO+lensing+HST

The Universe Post-Bicep (pre-Planck-
dust)
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PLANCK COLLABORATION 2013

The Universe Post-Planck-dust?
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The Universe Post-Planck-dust?
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Inflation paradigm

inflation: reheat�� 1

V
(�

)
V > Ek ds2 = �dt2 + e2Htdx2

⌘ / V 00 ⌧ 1
✏ / V 0 ⌧ 1
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Inflation paradigm

perturbation

inflation

Hubble ra
dius

� ⇥ Ḣ � H(t) = H

� � a

L
og

(�
)

Log(a)(� time)

ds2 = �dt2 + e2Htdx2
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CMB and LSS 
max 10 efolds
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CMB and LSS 
max 10 efolds

Within these 10 E-folds, red tilt (less power at small scales)

What do we really know 
about the potential?

Saturday, December 6, 14



CMB and LSS 
max 10 efolds

Within these 10 E-folds, red tilt (less power at small scales)

What do we really know 
about the potential?

? ?
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Can we extract anything beyond first few derivatives?
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FEATURES
• Roughly (for a single clock):

• Excitations in time --> Linear oscillations (decaying)

• Excitations in scale --> Logarithmic oscillations

• Any modification to initial conditions, or e.o.s. during inflation (at 
fixed time

• Modification of the initial condition at fixed scale, or oscillatory 
potential (linear). 

BERKELEY 2014
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FEATURES
• Consider following (general) solution to the e.o.m. :

• and 

BERKELEY 2014

�k = N(k) [uk + �(k)u⇤
k]

�⇤
k = N(k) [u⇤

k + �(k)⇤uk] .

|N(k)|2 = 1/(1� |�(k)|2)
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FEATURES
• Consider following (general) solution to the e.o.m. :

• and 

• The power spectrum is then given by:
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�k = N(k) [uk + �(k)u⇤
k]

�⇤
k = N(k) [u⇤

k + �(k)⇤uk] .

|N(k)|2 = 1/(1� |�(k)|2)

P�(k) / ��⇤ =
1

1� |�(k)|2
�
1 + |�(k)|2 + e2i �(k)⇤ + e�2i �(k)

�
|uk|2
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FEATURES
• Consider following (general) solution to the e.o.m. :

• and 

• The power spectrum is then given by:

• Writing                        and in the limit  
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�k = N(k) [uk + �(k)u⇤
k]

�⇤
k = N(k) [u⇤

k + �(k)⇤uk] .

|N(k)|2 = 1/(1� |�(k)|2)

P�(k) / ��⇤ =
1

1� |�(k)|2
�
1 + |�(k)|2 + e2i �(k)⇤ + e�2i �(k)

�
|uk|2

uk = |uk|ei � ⌧ 1

P�(k) ' P0 (1 + 2|�(k)| cos(↵(k) +  ))
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FEATURES

BERKELEY 2014

↵(k) ⇠ �k/f ⇠ (log k)/f↵(k) ⇠ ⇤/H ⇠ ⇤ log k

Non BD vacua Axion-monodromy
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MOTIVATION
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• More generally:

• Phenomenological/Observational

• Theoretical
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What do we predict? Theory ---> Observation
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• More generally:

• Phenomenological/Observational

• Theoretical

Do we learn something more? Observation--->Theory

What do we predict? Theory ---> Observation

Generally: Future of early Universe cosmology is constraining 
correlated variables, i.e. Theory ----> {A,B,C,...} observables

MOTIVATION
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MODELS
Derived templates
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k
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MODELS

1) e.g. Axion Monodromy, Natural inflation (similar), non-BD (NPH), unwinding 
inflation,  (e.g. Silverstein & Westphal 2008, Flauger et al 2009, D’Amico et al 2013,Greene et al 2004, Agullo & Parker 2011, 

Shandera et al. 2012,2013, Battefeld et al 2013) 

Derived templates
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MODELS

1) e.g. Axion Monodromy, Natural inflation (similar), non-BD (NPH), unwinding 
inflation,  (e.g. Silverstein & Westphal 2008, Flauger et al 2009, D’Amico et al 2013,Greene et al 2004, Agullo & Parker 2011, 

Shandera et al. 2012,2013, Battefeld et al 2013) 

2) e.g. non-BD (BEFT) (e.g. Porrati 2004(2), Greene et al 2004)  Change in e.o.s. (e.g. Joy, Sahni, 

Starobinsky 2007, Battefeld et al 2010, 2014 )
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DATA ANALYSIS
• 2 Issues:

• Likelihood is very irregular (slow convergence)

• Oscillations at high frequency require high resolution (   and   )

• MonteCarloMarkovChain (MH) generally becomes impractical 
(MULTINEST)

• Recomputing all transfer functions is time consuming

k `

Cl =
2

⇡

Z 1

0

dk

k
�2

R(k)(�T
l (k))

2
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PERTURBATIVE 
EXPANSION

Cl =
2

⇡

Z 1

0

dk

k
�2

R(k)(�T
l (k))

2

C` = Cu
` + Cp

`

Corrections are small

Perturbative expansion in 
oscillatory part

BERKELEY 2014

Saturday, December 6, 14



(�T
l (k))

2 = (�̄T
l )

2 + 2�̄T
l

X
(⇥i � ⇥̄)�̄T

l,⇥i
+O(⇥2

i )

PERTURBATIVE 
EXPANSION

Cp
` = C̄p(↵)

` + C̄p(�)
` +

X
(⇥i � ⇥̄i)(C̄

p(↵)
`,⇥i

+ C̄p(�)
`,⇥i

) +O((↵+ �)⇥2
i )

• Expand Transfer function in oscillatory part

• We then have for the perturbed part:

• Power spectra and derivatives can be precomputed:

C̄p
` C̄p

`,⇥i
C̄p

`,⇥i⇥j
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Improvement in units of        . Typically,     distribution of 3 variables, requires         of 
~11 for 3 sigma significance. 

��2 �2
��2

�2� logL = ��2
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Next few slides

Frequency

Im
pr

ov
em

en
t

Improvement in units of        . Typically,     distribution of 3 variables, requires         of 
~11 for 3 sigma significance. 

��2 �2
��2

�2� logL = ��2
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Multinest Marginalized 
prob. 
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PLANCK COLLABORATION 2013

MEERBURG, SPERGEL, WANDELT 2014

BERKELEY 2014

• M a r g i n a l i z e d 
l i k e l i h o o d 
computed in ~16 
hours, on 12 core 
node. 
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           VS
WMAP 9 PLANCK 1
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• Information criteria

• Simulations

• Circumstantial 

ARE THESE REAL?
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SIMULATIONS
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SIMULATIONS
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See also J. Hamann, A. Shafieloo, 
and T. Souradeep (2010), R. Easther 
and R. Flauger (2013)BERKELEY 2014
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SIMULATIONS

5000 Universes; WMAP 9 noise and cosmic variance, no signal
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and R. Flauger (2013)BERKELEY 2014
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SIMULATIONS
5000 Universes; Real Planck noise and cosmic variance, no signal

See also J. Hamann, A. Shafieloo, 
and T. Souradeep (2010), R. Easther 
and R. Flauger (2013)
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SIMULATIONS
5000 Universes; Real Planck noise and cosmic variance, no signal
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See also J. Hamann, A. Shafieloo, 
and T. Souradeep (2010), R. Easther 
and R. Flauger (2013)
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• Information criteria --> A mess

• Simulations --> Most likely not

• Circumstantial --> Most likely not

ARE THESE REAL?
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• What about BICEP? 2 Things:

• r = 0.2 would put extra tension between TT data and TT theory

• Also, r = 0.2 suggests Super Planckian displacement of field / 
violates Lyth bound

• Is there a model that would solve these 2 things in one go? Maybe: 
Axion monodromy. Shift symmetry 

• Solves first 

• and could induce a large feature, to solve second?

BICEP

BERKELEY 2014
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MEERBURG 2014
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FIG. 2: 2 Dimensional posterior probability distribution for ns vs �ns (left) and � vs �ns (right). The stars represent the best
fit points. The contours in red shades are derived from the chains with a prior on ! as specified in the text, while the blue
shaded contours are derived from a chain with a set value for the frequency, close to the best fit value found using the previous
chains. In the left it is clear that he tilt and amplitude are highly correlated; e↵ectively the long wavelength oscillation acts a
a tilt on low multipoles.

Data set \Parameter ⌦bh
2 ⌦ch

2 ⌧ H0 ns log 1010As �ns � ! r0.05 ��2

Planck+high ` + BICEP2 0.022 0.119 0.096 67.54 1.004 3.082 0.0743 1.28 0.802 0.21 ⇠ 11

Planck+high ` + BICEP2 - DDM2 0.022 0.119 0.098 67.74 0.997 3.076 0.09 0.93 0.64 0.13 ⇠ 7

TABLE I: Best-fit parameters for various data combinations. Note the tilt is ns ' 1 in order to account for e↵ects on small
scales due to the long wavelength oscillation. Subtracting potential foregrounds does not significantly change the parameter
values, nor the significance.

component ��2

Lowlike ⇠ �0.3

Lensing ⇠ 0.6

BICEP2 ⇠ �3.4

Commander ⇠ �8

CAMspec ⇠ 1.1

ACTSPT ⇠ �1.2

total ⇠ �11.2

TABLE II: ��2 breakdown per component for the analysis
of the axion model versus concordance model without fore-
ground corrections. The improvement is most significant in
commander and in BICEP2 as expected. Note also that there
is small improvement in the high ` fit. Including foreground
subtraction, the improvement in commander and BICEP are
lowered.

try to fit an oscillation to the TT spectrum with cosmic
variance an Planck-like noise, varying only the amplitude
and the phase of a fixed feature. We only consider up to
` = 1000, since we are interested in the improvement
at low multipole. This simple analysis suggests that the
noise alone can not account for a fit, given that the typ-
ical improvement from cosmic variance + noise os of the
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FIG. 3: Distribution of �2 improvements simulating 1000 Uni-
verses and fitting for a feature on ` < 1000. This simple anal-
ysis suggest that cosmic variance can account for ��2 ⇠ 2.

order ��2 ⇠ 2. Unlike for high frequencies therefore, a
long wavelength modulation follows a typical �2 distribu-
tion for ⇠ 2 parameters, which is not unexpected given
the nature of the modulation (an e↵ective rescaling of
the amplitude).

In Table II we break down the contribution to the im-

f/Mp ⇠ O(.01)
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• Bispectrum. Difficult

• Too low signal to noise in a single mode: sum over all modes: 

• use weighting or template: if template is off, measurement is zero 

• many templates are needed for different frequencies/phases

• also, computationally, prefer something that is factorizable, because building an 
estimator would be super slow (i.e. KSW estimator)
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BISPECTRUM

• Bispectrum. Difficult

• Too low signal to noise in a single mode: sum over all modes: 

• use weighting or template: if template is off, measurement is zero 

• many templates are needed for different frequencies/phases

• also, computationally, prefer something that is factorizable, because building an 
estimator would be super slow (i.e. KSW estimator)

• Using Fourier expansion seems to be the most efficient
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• Bispectra will have preserved scaling argument (log vs lin), but

• Bispectra measure interactions, so the exact scale dependence will generally be 
different. Could lead to mixed effects. 

• Simplest is bispectrum of the resonant form:

• Not factorized, several ways, most efficient way:

B�(k1, k2, k3) =
6�2

�fNL

(k1k2k3)2
sin

⇣
! log

kt
k⇤

+ �
⌘
.

S(kt) =
PN

n=0

⇣
an cos

2⇡nkt
�kt

+ bn sin
2⇡nkt
�kt

⌘
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FIG. 7: Comparison between the modal expansion result and the exact result. Top: ` = `

1

= `

2

= `

3

. Bottom: `

1

= 100, ` =
`

2

= `

3

with ! = 50. Other frequencies work with comparable precision.
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where the expectation values have to be evaluated by Monte Carlo averaging over Gaussian map realisations generated
with the same beam, mask and noise properties as expected in the data. The KSW filtered maps are given by

A
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The Fisher matrix that normalizes the estimator is given by
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We compute the Fisher matrix in the next section.
The third parameter that has to be determined, besides the amplitude and phase of the oscillation, is the frequency.

This parameter hast to be scanned over. The modal expansion allows to do this with a minimum of additional
computational e↵ort, since only the factors c

n

depend on these parameters. In the next section we study degeneracy
of frequency and phase, and the sensitivity with which they can be obtained.
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FIG. 10: Signal-to-noise ratio S/N = f

NL

p
F

BB

for di↵erent oscillation parameters ✏
osc

as a function of the oscillation frequency
!, based on the study in [34]. The dashed black line indicates the asymptotic scaling behavior. A large parameter space is
observable.

these shapes are really hard to expand in modes [38] and further investigation is needed to find the optimal expansion
for these shapes.

Eventually, the estimator presented here (including polarization) should be applied jointly with estimates of the
power spectrum. Such an analysis is computationally challenging; a first attempt has been made to investigate the
possible presence of correlated noise in both signals in Ref. [41].We plan to further explore the possibility of jointly
constraining N-point correlation functions in the future.

We have access to unprecedented CMB temperature data, with polarization data following soon, including ground
based CMB experiments to further map out the details on small scales. The e↵ort in the next decade will be to find
any deviations away from single-field slow-roll, including measurable levels of non-Gaussianity. The work presented
in the paper will allow us to probe a part of parameter space which has so far been unexplored and as such will
contribute in this e↵ort.
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INFLATION CONSISTENCY 
CONDITION

• What?

• Relation between power in tensors and scale dependence in 
tensors: 

• Why?

• Unique prediction from ‘inflation’. Even for more fields. At least tilt 
is always blue. Would violate null energy condition.

• Counter examples: Ekpyrotic, or inverse decay of Gauge quanta. 

nt = �r/8
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INFLATION CONSISTENCY 
CONDITION

• For (accurate) tilt measurement (at level of this relation), would 
need other measures (then CMB). 

• Direct detection? Probably. Hard, see e.g. Dodelson (2014), Boyle 
et al (2014). BBO? Elisa?

• What do we know now? 

• CMB only, CMB+LIGO+PTA, CMB++ (BBN?), -BICEP?

BERKELEY 2014
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RESULTS (1)

MEERBURG B. HADZHIYSKA, R. HLOZEK AND 
MYERS (2014)

Testing inflation consistency condition w current data: nt = �r/8
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RESULTS (2)
What about background expansion? Too much GW’s 
would change expansion history, BBN?
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RESULTS (2)
What about background expansion? Too much GW’s 
would change expansion history, BBN?

BERKELEY 2014

So, yes, matters. But depends strongly on UV cutoff. Also, above constraint 
should really come from Neff (which is more complicated, see e.g. Bashinsky 
& Seljak 2003). Error bar is bigger, about 10 percent w Planck 2014. 

MEERBURG B. HADZHIYSKA, R. HLOZEK AND 
MYERS (2014)
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• Features? Somewhat natural, measurement would be profound. 
Perturbative approach; fast and accurate

• Log spaced oscillations:

• WMAP 9 signature has mostly disappeared.

• New low freq. signatures. Mild correlation with lensing amplitude. 

• Linear spaced oscillations. 

• WMAP 9 and Planck are consistent

• Are these real? Most likely not (at 95% C.L.)

• Bicep would favor running/long wavelength oscillation at almost 3 sigma

WHAT DRIVES INFLATION? 
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• Test inflation consistency condition

• LIGO and expansion history give very similar constraints

• Near future, LIGO will be better. Long term, BBO. 

• There exists some model dependence, i.e. cutoff scale etc.

• LIGO will also be dominated by mergers, so constraint is conservative. 

• For (too) negative tilt, IR divergence. Is this a bigger problem (what about super 
horizon modes?) GW energy density no longer well defined? (only back reaction 
on the metric). 

DID INFLATION HAPPEN?
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