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Overview of this talk

• Motivation for this 
research. 

• Basic concepts of the 
theory of cosmic 
structure formation. 

• Simulation techniques 
and challenges in the 
field.



The Milky Way
1 pc = 3.0857 x 1016 m 
8 kpc = 2.5 x 1020 m 



Galaxies

Up to 100 billion 
stars!



Galaxy Groups and Clusters

Hickson Group 
Galaxy Group 
<50 galaxies.

Virgo Cluster 
Galaxy Cluster 

Up to ~100 galaxies. 
Sizes up to a few Mpc.



Large Scale Structure

Cosmic Web 

This is how the Universe looks 
like on scales ~100 Mpc. 

There is a hierarchy of 
structures of different sizes 
that constitute our Universe. 
 

Sloan Digital Sky Survey (SDSS)



Cosmological Structure 
Formation

Understanding structure formation in the context of an evolving 
universe.  

It’s a work in progress that requires: 

• Observations to characterize the “ingredients” of the Universe.  

• A theory for structure formation.  

• Calculations to make testable predictions from the theory. 



Big Bang Cosmology



Cosmic Microwave 
Background Anisotropies

ESA Planck



Growth of primordial 
perturbations
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Simple model of the Universe
14%

86%

Dark Matter
Ordinary Matter (electrons, atomic nuclei)

A series of hypotheses based on observational 
evidence: 

•  The Universe expands. 

•  Dark Matter only interacts gravitationally and 
dominates the growth of cosmic structure. 

•  Ordinary Matter can be neglected to zero-th order.



Dark Matter Dynamics

Gravity is a long-range force.  

Dark Matter particles respond to the 
gravitational potential generated by 
the global distribution of Dark Matter. 

B.2 Divergence operator

The Divergence operator, also called grad, or nabla, in Cartesian coordinates is given by:
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The above notation is commonly used, but is potentially dangerous. More formally, we should write:
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where x̂, ŷ, ẑ are unit vectors pointing along each of the Cartesian coordinate axes. In Cartesian
coordinates, where each unit vector is a function only of one coordinate (r · x̂ = @

@x

, etc.), this
distinction is not so important. However, in more general orthogonal coordinates, we must remember
that nabla acts also on the unit vectors themselves.
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where ê
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, ê
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, ê
3

are unit vectors pointing along each of the general coordinate axes. Note that we
do not concern ourselves here with covariant and contravariant forms since these only come into play
when we consider non-orthogonal coordinate systems.

B.3 Divergence & Curl

The Divergence in Cartesian coordinates is defined:
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And in a general, orthogonal, coordinate system: (q
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Similar results may be derived for the curl, r⇥F, in general coordinate systems (see e.g. Arfken and
Weber 2005).

The Divergence and Curl may be better understood physically through the following theorems:

The Divergence Theorem: Z
V

r · FdV =

Z
S

F · dS (B.10)

4.  The ‘one body problem’: Potential theory

Gauss’s theorem (divergence theorem):

Key results from vector calculus
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The above two theorems give us physical insight. Suppose that the field F represents the force per unit
mass of a gravitational field: F = �r�. Then r·F = 0 tells us that there is no net force pointing in or
out of a surface bounding some volume around the gravitational field, V . No force means no mass to
produce that force. Not surprisingly, then, we have from Poisson’s equation r ·F = r2� = 4⇡G⇢ = 0.
Similarly, r ⇥ F = 0 tells us something important about the gravitational field. It means that the
integral around a closed loop of F · dl = 0. But this is just the work done – the energy expended in
moving around that closed loop. It means that the field is conservative and that particles moving in
that field conserve energy. Since r ⇥ r� = 0 for any scalar field � [exercise], we have that gravity
must be a conservative force.
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Poisson’s Equation

Defining the gravitational potential �(x) by:

�(x) = �G

Z
⇢(x0)

|x0 � x|d
3x0 (3.3)

we find:
F(x) = �r�(x) (3.4)

The above tells us that the gravitational force per unit mass is fully specified by a scalar field, �(x).

3.1.2 Poisson’s equation

The above gives us the force per unit mass from the potential. To calculate the potential from the
mass distribution, we need Poisson’s equation and we derive this here. Combining equations 3.4 and
3.3, we obtain:

r� = G

Z
⇢(x0)(x � x0)

|x0 � x|3 d3x0 (3.5)

Thus:

r · (r�) = G

Z
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x

·


(x � x0)

|x0 � x|3
�

d3x0 (3.6)

The term in square brackets is a straight-forward di↵erentiation. But we include it in order to point
out a remarkable coincidence:

r
x
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=
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|x0 � x|5 (3.7)

The above di↵erential is zero everywhere, except at x = x0. This remarkable cancellation occurs only
because gravity is exactly an inverse square law in three dimensions. It is what leads us to Poisson’s
equation:

r2�(x) ⌘ r · (r�) = G⇢(x)

Z
d2⌦

= 4⇡G⇢(x) (3.8)

where the above follows since the integral will be zero everywhere except at x0 = x. In this limit, ⇢(x)
comes out of the integral, and we are left with just an integral over solid angle, d2⌦.

3.1.3 Some other general results

Integration of Poisson’s equation (equation 3.8), and application of the Divergence Theorem3, leads
directly to Gauss’ Theorem:

4⇡G

Z
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Z
r�.d2S (3.9)

The total potential energy of a mass distribution is given by:

W =
1

2

Z
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Finally, notice that, from Stoke’s Theorem4, Gravity is a conservative force:I
C

F · dl =

Z
S

(r⇥r�) · d2S = 0 (3.11)

The left integral is, by definition, just the work done in moving around a closed path, C. Since this
is zero, this tells us that particles moving in a static gravitational field must conserve energy. Have a
think about this in more detail. The Earth, for example, orbits around the Sun. But does it conserve
energy?

3See Appendix B.
4See Appendix B.
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Gravitational force



Dark Matter Dynamics

Lecture 6

Collisionless N-body systems

In this lecture, we discuss how to simulate collisionless N -body systems. These typically have N � 106

and the force evaluation rather than the timestepping is the hard part. We therefore spend some time
discussing how to e�ciently calculate the force for systems with very large N > 109. This lecture
largely follows our review article (Dehnen and Read 2011); applications will follow later at the end of
the course.

6.1 The continuum limit: the collisionless Boltzmann equa-
tion

For star clusters, with ⇠ 105 stars, we may use direct summation techniques, as discussed in the
previous lecture. But our own Galaxy has some 1010 stars and (possibly) an unimaginable amount of
dark matter particles. The trick to getting around the N2 problem in this case is to use the fact that
galaxies are collisionless to a very good approximation (see §1). Assuming N is very large, we may
move to the continuum limit, describing the collisionless system by a smooth di↵erentiable distribution
function f(x, ẋ, t) that obeys the collisionless Boltzmann equation:

df

dt
=
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+ ẋ
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@v
= 0 (6.1)

where we have used the fact that ẍ = �r�. Observables are then extracted from f by taking
moments, for example the density and the gravitational potential:
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Z
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Z
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Now, in principle we can try to solve equation 6.1 numerically, expanding f as some orthogonal basis
set, for example. However, this is hard for two reasons. The first problem is that f is six-dimensional.
Thus, with 106 grid points we would still only sample f with just 10 points per dimension. This
makes large problems extremely challenging. But the second problem is more fundamental and is a
consequence of Liouville’s theorem: for collisionless systems, 6D phase space density is conserved (see
Appendix H). To illustrate why this is a problem, consider a 1D problem where N -body particles
move under a 1D gravitaional force along a line. In this case, phase space is two dimensional (q, p),
with momentum p = mq̇. Suppose that we start with a square of particles in phase space with
q
min

< q < q
max

; p
min

< p < p
max

(see Figure 6.1). Imagine first the system evolving without any
forces acting. The top of the square moves more quickly than the bottom causing the square to shear
out into a line; this is what we see for the very early time evolution (t = 1 in Figure 6.1). Once
we add the 1D gravitational force, all particles will have an orbital turning point at some q

max

at
which they turn around and fall back, moving to negative p on the phase diagram. The result as time
marches forward is that the particles ‘wrap up’ in phase space to form an every more tightly wound
spiral pattern as shown in Figure 6.1. The area in the spiral must equal the area in the initial square
by Liouville’s theorem, but this becomes increasingly di�cult to measure as the sprial becomes ever
more tightly wound. And now we see the di�culty. A faithful numerical solution of equation 6.1

64

Dark Matter particles only see the global gravitational 
potential.  

f(x,v,t) = Probability for a dark matter particle of having 
velocity v while being at position x.

Lecture 6

Collisionless N-body systems

In this lecture, we discuss how to simulate collisionless N -body systems. These typically have N � 106

and the force evaluation rather than the timestepping is the hard part. We therefore spend some time
discussing how to e�ciently calculate the force for systems with very large N > 109. This lecture
largely follows our review article (Dehnen and Read 2011); applications will follow later at the end of
the course.

6.1 The continuum limit: the collisionless Boltzmann equa-
tion

For star clusters, with ⇠ 105 stars, we may use direct summation techniques, as discussed in the
previous lecture. But our own Galaxy has some 1010 stars and (possibly) an unimaginable amount of
dark matter particles. The trick to getting around the N2 problem in this case is to use the fact that
galaxies are collisionless to a very good approximation (see §1). Assuming N is very large, we may
move to the continuum limit, describing the collisionless system by a smooth di↵erentiable distribution
function f(x, ẋ, t) that obeys the collisionless Boltzmann equation:
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moments, for example the density and the gravitational potential:
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Now, in principle we can try to solve equation 6.1 numerically, expanding f as some orthogonal basis
set, for example. However, this is hard for two reasons. The first problem is that f is six-dimensional.
Thus, with 106 grid points we would still only sample f with just 10 points per dimension. This
makes large problems extremely challenging. But the second problem is more fundamental and is a
consequence of Liouville’s theorem: for collisionless systems, 6D phase space density is conserved (see
Appendix H). To illustrate why this is a problem, consider a 1D problem where N -body particles
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out into a line; this is what we see for the very early time evolution (t = 1 in Figure 6.1). Once
we add the 1D gravitational force, all particles will have an orbital turning point at some q
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marches forward is that the particles ‘wrap up’ in phase space to form an every more tightly wound
spiral pattern as shown in Figure 6.1. The area in the spiral must equal the area in the initial square
by Liouville’s theorem, but this becomes increasingly di�cult to measure as the sprial becomes ever
more tightly wound. And now we see the di�culty. A faithful numerical solution of equation 6.1
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Boltzmann Equation

Dark Matter 3D - Density

B.2 Divergence operator

The Divergence operator, also called grad, or nabla, in Cartesian coordinates is given by:
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where x̂, ŷ, ẑ are unit vectors pointing along each of the Cartesian coordinate axes. In Cartesian
coordinates, where each unit vector is a function only of one coordinate (r · x̂ = @
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ê
2

h
2

@

@q
2

+
ê
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2

, ê
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are unit vectors pointing along each of the general coordinate axes. Note that we
do not concern ourselves here with covariant and contravariant forms since these only come into play
when we consider non-orthogonal coordinate systems.
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Similar results may be derived for the curl, r⇥F, in general coordinate systems (see e.g. Arfken and
Weber 2005).

The Divergence and Curl may be better understood physically through the following theorems:

The Divergence Theorem: Z
V

r · FdV =
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F · dS (B.10)

4.  The ‘one body problem’: Potential theory

Gauss’s theorem (divergence theorem):

Key results from vector calculus

Z

V
� · Fd3x =

Z

S
F · dS

⇥ =
�

�
�x

,
�
�y

,
�
�z

⇥
Div. operator in Cartesian coordinates (x,y,z):

Stoke’s theorem:
I

C
F · dl =

Z

S
(��F) · dS

dS

V

S

S

dS

C

Stoke’s Theorem: I
C

F · dl =

Z
S

(r⇥ F) · dS (B.11)

4.  The ‘one body problem’: Potential theory

Gauss’s theorem (divergence theorem):

Key results from vector calculus

Z

V
� · Fd3x =

Z

S
F · dS

⇥ =
�

�
�x

,
�
�y

,
�
�z

⇥
Div. operator in Cartesian coordinates (x,y,z):

Stoke’s theorem:
I

C
F · dl =

Z

S
(��F) · dS

dS

V

S

S

dS

C

The above two theorems give us physical insight. Suppose that the field F represents the force per unit
mass of a gravitational field: F = �r�. Then r·F = 0 tells us that there is no net force pointing in or
out of a surface bounding some volume around the gravitational field, V . No force means no mass to
produce that force. Not surprisingly, then, we have from Poisson’s equation r ·F = r2� = 4⇡G⇢ = 0.
Similarly, r ⇥ F = 0 tells us something important about the gravitational field. It means that the
integral around a closed loop of F · dl = 0. But this is just the work done – the energy expended in
moving around that closed loop. It means that the field is conservative and that particles moving in
that field conserve energy. Since r ⇥ r� = 0 for any scalar field � [exercise], we have that gravity
must be a conservative force.
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Poisson’s Equation for 
the gravitational potential



Problems, problems, problems…

Lecture 6

Collisionless N-body systems

In this lecture, we discuss how to simulate collisionless N -body systems. These typically have N � 106

and the force evaluation rather than the timestepping is the hard part. We therefore spend some time
discussing how to e�ciently calculate the force for systems with very large N > 109. This lecture
largely follows our review article (Dehnen and Read 2011); applications will follow later at the end of
the course.

6.1 The continuum limit: the collisionless Boltzmann equa-
tion

For star clusters, with ⇠ 105 stars, we may use direct summation techniques, as discussed in the
previous lecture. But our own Galaxy has some 1010 stars and (possibly) an unimaginable amount of
dark matter particles. The trick to getting around the N2 problem in this case is to use the fact that
galaxies are collisionless to a very good approximation (see §1). Assuming N is very large, we may
move to the continuum limit, describing the collisionless system by a smooth di↵erentiable distribution
function f(x, ẋ, t) that obeys the collisionless Boltzmann equation:

df

dt
=
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@t
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@f

@v
= 0 (6.1)

where we have used the fact that ẍ = �r�. Observables are then extracted from f by taking
moments, for example the density and the gravitational potential:
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Z
fd3v ; � = �G

Z
d3x

⇢(x0)

|x � x0| (6.2)

Now, in principle we can try to solve equation 6.1 numerically, expanding f as some orthogonal basis
set, for example. However, this is hard for two reasons. The first problem is that f is six-dimensional.
Thus, with 106 grid points we would still only sample f with just 10 points per dimension. This
makes large problems extremely challenging. But the second problem is more fundamental and is a
consequence of Liouville’s theorem: for collisionless systems, 6D phase space density is conserved (see
Appendix H). To illustrate why this is a problem, consider a 1D problem where N -body particles
move under a 1D gravitaional force along a line. In this case, phase space is two dimensional (q, p),
with momentum p = mq̇. Suppose that we start with a square of particles in phase space with
q
min

< q < q
max

; p
min

< p < p
max

(see Figure 6.1). Imagine first the system evolving without any
forces acting. The top of the square moves more quickly than the bottom causing the square to shear
out into a line; this is what we see for the very early time evolution (t = 1 in Figure 6.1). Once
we add the 1D gravitational force, all particles will have an orbital turning point at some q

max

at
which they turn around and fall back, moving to negative p on the phase diagram. The result as time
marches forward is that the particles ‘wrap up’ in phase space to form an every more tightly wound
spiral pattern as shown in Figure 6.1. The area in the spiral must equal the area in the initial square
by Liouville’s theorem, but this becomes increasingly di�cult to measure as the sprial becomes ever
more tightly wound. And now we see the di�culty. A faithful numerical solution of equation 6.1
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1. BE is a non-linear integro-differential equation in 
6d. General non-trivial solutions are hard to find! 

2. Solutions for cosmic structure formation have to be 
accurate over a huge dynamic range.  

Boltzmann Equation

From galaxies…        To clusters…             To the LSS. 



Cosmological Simulations

Initial conditions 
motivated by  

Big Bang theory. 
A snapshot of a  

simulated universe 
at a given time. 

Can be compared to observations to test theory!

Theory 
+ 

Simulation 
Algorithm 

+ 
Supercomputer



N-body approach

Discretization of the 6-D distribution of DM.

Continuous, 
smooth  
f(x,v,t) 

Monte Carlo  
sampling

N particles of  
mass m  



Typical algorithm for DM dynamics

Generate initial conditions,  
e.g. N bodies with given x an v. 

Compute gravitational force acting  
on each particle.

Move particles according to the force  
they feel.

New configuration of particles.



Number of bodies and resolution

19
72
Ap
J.
..
17
8.
.6
23
T

N~100 particles 
(Toomre & Toomre 1972)

8 Hopkins et al.

HiZ

2 kpc

Sbc

2 kpc

MW

3 kpc

SMC

1 kpc

1 kpc 500 pc 1 kpc 300 pc

Figure 1. Images of the gas distribution for our fiducial simulations (⌘p = ⌘v = 1) in the feedback-regulated quasi steady-state. Brightness shows the gas
surface density while color shows the specific SFR (increasing from blue to red); both are on a logarithmic scale spanning a dynamic range of ⇠ 106.
Top: Large scales (wide-field image) out to twice the half-gas mass radius. Middle: Intermediate scales (zoom-in of the image at top) out to the half-SFR
radius. Bottom: Edge-on; scale is same as the middle image. One example is shown for each of the initial conditions we model (HiZ_10_4_hr, Sbc_10_4_hr,
MW_10_4_hr, and SMC_10_4_hr in Table 2). The simulations develop complex substructure and exhibit a diverse range of gas morphologies. Most stars are
formed in dense but resolved giant ‘molecular’ cloud complexes, which are the sites of the feedback modeled here.

HiZ: Extreme Feedback

1 kpc

HiZ: No Feedback

1 kpc

Figure 2. As Figure 1 (middle left), but for an otherwise identical HiZ sim-
ulation with extremely strong feedback (left) with ⌘p = 100 (this is not a
realistic choice but purely shown for illustrative purposes), and one with no
feedback (right). With arbitrarily strong feedback, all collapse of gas into
GMC complexes is suppressed. With no feedback, the cloud complexes in
Figure 1 undergo runaway collapse to the resolution limit (the single white
pixels at right); the mass piles up at densities & 104 times larger than in our
“standard” models.

sity gas with n ⌧ 1cm�3, the sound speed and turbulent velocity
are often comparable, but for denser gas the turbulent velocity is
always much larger than the thermal sound speed.

The characteristic densities of clumps/GMCs are evident in
the peak of the gas distributions near n ⇠ 100cm�3 in Figure 3;
the typical turbulent mach numbers for this gas are ⇠ 30 � 100.
Because of the high Mach numbers, turbulent motions rather than
thermal motions are the dominant impediment to gravitational col-

lapse. Specifically, the characteristic mass of large GMCs is set by
the turbulent Jeans mass for the bulk of the matter, and corresponds
to: ⇠ 105 M� in the SMC case, ⇠ 106 M� in the MW and Sbc
cases, and ⇠ 108 M� in the HiZ case. These estimates agree rea-
sonably well with the observed properties of massive cloud com-
plexes in the respective systems. By contrast, if the gas were ther-
mally supported, the characteristic mass of collapsed gas would be
much smaller. For the dense gas, however, thermal support is only
important on scales below the sonic length (. 0.1pc), which is well
below our resolution limit.

The minimum pressure to prevent unresolved collapse below
the resolution limit (eq. 1) is well below the resolved turbulent pres-
sure for the median densities in Figure 3. This effective pressure
does, however, produce the small “upturn” in the turbulent �v at
the very highest densities n � 104 cm�3. For our purposes, the key
point is that we resolve the median GMC length, density, and mass
scales well, even in our lowest-resolution models.

3.1 Morphologies

There are a variety of morphologies present in the simulated galax-
ies depending on how self-gravitating the disk is. The high-redshift
disk analogues (HiZ) are the most strongly self-gravitating and
so fragment into very massive clumps (MToomre ⇠ 108 � 109 M�),
which dominate the star formation. This morphology resembles the
clumpy systems observed at z ⇠ 2�3 (Genzel et al. 2008; Tacconi
et al. 2006; Law et al. 2009). This is even more clear when we
focus on the region which contains half the star formation (mid-

c� 0000 RAS, MNRAS 000, 000–000

N~108 particles 
(Hopkins et al. 2011)

Better resolution -> More precise predictions. 

Large N -> High computational cost. 

Fast algorithms required! 



Direct summation

What’s the gravitational 
force acting on a particle? 

Lecture 5

Collisional N-body systems

In this lecture, we discuss how to simulate collisional N -body systems. These typically have N < 106

and the force evaluation is not the hard part; rather, it is the timestepping (evolving the system
forwards in time) that is challenging. After briefly describing the force evaluation, we focus our
e↵orts on building an accurate and conservative time integration scheme. This lecture largely follows
our review article (Dehnen and Read 2011).

5.1 Direct force evaluation

For N -body systems will small N , we can simply treat the particles as discrete point masses. Indeed,
this is almost exactly correct if the bodies are stars within a star clusters, or planets in a solar system
since such bodies are so small compared to the system size and typically near-perfectly spherical. The
(Newtonian) force on a particle i then follows from a simple sum over particles j:

F
i

=
NX
j

Gm
i

m
j

(x
j

� x
i

)

|x
i

� x
j

|3 (5.1)

where F
ij

is the force between particle pairs i and j at positions x
i

and x
j

and N is the total number
of particles.

We immediately run into two computational problems, however. The first is that we must compute
O(N) sums for each particle and thus the algorithm scales as O(N2) which is very slow (i.e. if I increase
the number of particles by a factor 10, the computational costs will increase 100 fold!). Secondly, recall
that these ‘particles’ are merely sampling points in the density field. If two approach one another,
they should not really behave like giant point masses. Yet equation 5.1 has that F

i

diverges for
x
i

! x
j

. For collisionless N -body systems that we will discuss in the next lecture, this latter problem
is typically solved by introducing a force softening ✏ such that the force equation becomes:
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which removes the diverging force for approaching particles.
For collisional systems, however, we actually want to model close encounters. We might still want

to use some ✏, but it should represent the physical size of the gravitating bodies – the radius of a
star or planet, for example. How then do we cope when bodies get very close together and the forces
become very large? This we must address by using clever timestepping algorithms and, ultimately,
by introducing some regularisation. We discuss these, next.
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It requires O(N2) operations per time step. 

Bottleneck for large N!



Particle Mesh Methods
Build a Cartesian mesh. 

Interpolate particles to obtain 
 density ρ(x) at the mesh nodes. 

Compute FFT of density ρ(k)

Solve Poisson equation,  
get Φ(k) FT of  

gravitational potential.

Inverse FFT to get grav. pot.  
in at mesh nodes Φ(x).

Compute forces at nodes  
and interpolate back to particles.

Scaling  
O(Nmesh ln(Nmesh)) 

B.2 Divergence operator

The Divergence operator, also called grad, or nabla, in Cartesian coordinates is given by:
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The above notation is commonly used, but is potentially dangerous. More formally, we should write:
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where x̂, ŷ, ẑ are unit vectors pointing along each of the Cartesian coordinate axes. In Cartesian
coordinates, where each unit vector is a function only of one coordinate (r · x̂ = @

@x

, etc.), this
distinction is not so important. However, in more general orthogonal coordinates, we must remember
that nabla acts also on the unit vectors themselves.
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where ê
1

, ê
2

, ê
3

are unit vectors pointing along each of the general coordinate axes. Note that we
do not concern ourselves here with covariant and contravariant forms since these only come into play
when we consider non-orthogonal coordinate systems.

B.3 Divergence & Curl

The Divergence in Cartesian coordinates is defined:
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Similar results may be derived for the curl, r⇥F, in general coordinate systems (see e.g. Arfken and
Weber 2005).

The Divergence and Curl may be better understood physically through the following theorems:

The Divergence Theorem: Z
V

r · FdV =

Z
S

F · dS (B.10)

4.  The ‘one body problem’: Potential theory

Gauss’s theorem (divergence theorem):

Key results from vector calculus
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Gauss’s theorem (divergence theorem):
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The above two theorems give us physical insight. Suppose that the field F represents the force per unit
mass of a gravitational field: F = �r�. Then r·F = 0 tells us that there is no net force pointing in or
out of a surface bounding some volume around the gravitational field, V . No force means no mass to
produce that force. Not surprisingly, then, we have from Poisson’s equation r ·F = r2� = 4⇡G⇢ = 0.
Similarly, r ⇥ F = 0 tells us something important about the gravitational field. It means that the
integral around a closed loop of F · dl = 0. But this is just the work done – the energy expended in
moving around that closed loop. It means that the field is conservative and that particles moving in
that field conserve energy. Since r ⇥ r� = 0 for any scalar field � [exercise], we have that gravity
must be a conservative force.
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Tree Methods

Figure 6.3: Schematic illustration of the Barnes and Hut oct-tree in two dimensions. The particles are
first enclosed in a square (root node). This square is then iteratively subdivided in four squares of half
the size, until exactly one particle is left in each final square (the leaves of the tree). In the resulting
tree structure, each square can be a ‘parent’ of up to four ‘children’. Note that empty squares need
not be stored. For a three-dimensional simulation, the tree nodes are cubes instead of squares.

6.4 Force calculation: Tree techniques

The other obvious thing to do is to solve the multipole expansion. In practice, this is often combined
with tree techniques. The density is represented by particles, as in the direct summation technique,
but now we divide up space into a tree structure (see Figure 6.3). At the base of the tree is the root
node. This is then subdivided into branches of the tree which are themselves subdivided until we
arrive at one particle per sub-division – the leaves of the tree. The tree can be built by dividing space
in a number of di↵erent ways. A popular choice is the oct-tree where each parent cube is divided into
eight equal children (also called the Barnes and Hut oct-tree after Barnes and Hut 1986). This is
useful because all cells are cubic. But other, more complicated, choices can be better. Binary trees,
for example, divide the cubes into two halves which leads to rectangular cells, but a more adaptive
(and therefore more e�cient) space division (see e.g. Stadel 2001).

Having built the tree, we calculate the potential of each tree node as:

�
node

(r) = �G

Z
node

d3x
⇢(x)p

✏2 + |r � x|2 (6.11)

where x is the distance to the centre of mass of the node, and we have used the softened potential
corresponding to the softened force of equation 6.4 (other choices of softening Kernel are also possible;
see e.g. Dehnen 2001). For particle simulations, the density within the node is a sum over delta
functions:

⇢
node
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X
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m
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where x↵ is the distance from the centre of mass of the node to one of the particles.
Substituting equation 6.12 in 6.11 then gives:
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Now, since |r| � |x↵|, we may Taylor expand1 the square root to give:
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where s2 = ✏2 + |r|2 and we use the summation convention2.
The above is just the multipole expansion for the node in Cartesian coordinates. The first term

is the monopole, the second the dipole – that must be zero because we use coordinates about the
centre of mass, and the third is the quadrupole. It is useful because the dependence on r now falls out
linearly: we may calculate these multipole sums for each node and then sum over all nodes to obtain

1see Appendix D.
2see appendix B.
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Step 1: Organize particles  
in a tree structure.

Oct tree, Barnes & Hut, 1986 Step 2: walk the tree and  
sum force contribution  

from tree branches.

Standard tree code scaling:  
~O(N ln(N)) 

Modern techniques as fast as O(N).



Modern simulations
• Include both Dark and Ordinary Matter. Require combination of 

N-body and Computational Fluid Dynamics methods. Better 
physical modeling. 

• 106-1012 bodies. Better scaling of the algorithms. 

• 105-107 CPU hours on computing clusters. Code parallelization. 

• 10-100 TB of data to analyze. Big Data. 

• Performed with optimized “community” codes. Open source vs. 
“limited access” codes.



Where do we run the 
simulations?

Pleiades supercomputer  
at NASA’s Ames Research Center

Example: 
• ~200000 CPUs. 
• GPU nodes. 
• ~800 TB of memory. 
• 6.28 Pflop/s. 

See also XSEDE (NSF).



Millenium Run 

Springel et al. (2005).



What can we learn?

Average Star Formation Histories From Z=0-8 11
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FIG. 5.— Left panel: Average star formation rates as a function of halo mass and redshift. The overlaid white lines show average mass accretion histories
for halos as a function of redshift for comparison. The grey area shows halos that would have a mass of > 1015.5M⊙ at z = 0 and therefore are not expected to
exist. Right panel: Star formation histories (SFH) as a function of present-day halo mass and redshift, for galaxies at z = 0. This figure shows the historical star
formation rate for stars in the galaxy at the present day. Since the contribution of stars from merging galaxies is so low, this is equivalent to the star formation
rate traced along the white mass accretion trajectories in the left panel.
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FIG. 6.— Left panel: Average star formation rates for the galaxies in halos at a given halo mass and redshift (lines). Shaded regions indicate the one-sigma
posterior distribution. Right panel: Average star formation histories as a function of halo mass and redshift (lines). Shaded regions indicate the one-sigma
posterior distribution. Histories for 1015M⊙ halos are not shown as they are very similar to those for 1014M⊙ halos.
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FIG. 7.— Left panel: Evolution of the derived stellar mass as a function of halo mass. In each case, the lines show the mean values for central galaxies. These
relations also characterize the satellite galaxy population if the horizontal axis is interpreted as the halo mass at the time of accretion. Error bars include both
systematic and statistical uncertainties, calculated for a fixed cosmological model (see §4 for details). Right panel: Evolution of the derived stellar mass fractions
(M∗/Mh) as a function of halo mass.

Dark Matter Mass (Msun)

S
te

lla
r M

as
s 

(M
su

n)
 

Behroozi+ (2013)

Ordinary Matter 
does not  

exactly trace  
Dark Matter.
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Rhapsody-G I: massive galaxy clusters 7

Figure 2. Comparison of ICM profiles from Rhapsody-G (red
and blue ribbons) with observational data from our mass-matched
subset of ACCEPT clusters (black solid and dashed lines). Top:
electron density profiles, 2nd from top: entropy profiles, 3rd from
top: temperature profiles, and bottom: total mass profiles. The cool-
core clusters in the ACCEPT subset are indicated by dashed lines,
while the cool-core Rhapsody-G clusters are shown in blue and the
non-cool-core in red. The simulated haloes were stacked individually
for each cluster while occupying the same mass range as the ACCEPT
subset. The shaded ribbons indicate the 1� scatter in each stack,
reflecting time variations in the profiles. We excluded the fossil
cluster RG 572 (see text).

In Figure 2, we show the comparison between the mass-
selected ACCEPT sub-sample and stacked profiles from the
Rhapsody sample. For each simulated cluster, we show the
mean profile as well as the standard deviation around that
mean profile, obtaining one ribbon for each Rhapsody cluster
in Figure 2. For this analysis, we excluded the fossil cluster
RG 572 since it shows an extremely fluctuating entropy and
core density, caused by a very active and rapid growing central
hypermassive black hole of ⇠ 3⇥ 1011 M� at z = 0. Note that
in the full Rhapsody sample of more than 100 clusters this
was still a completely abnormal case. This cluster is so atypical
in its core properties already in pure N -body simulations that
we only note here that it is also an outlier in its baryonic core
properties.

The number of profiles stacked for each cluster is di↵erent
and given in Table 1. In all cases, we find that the dispersion in

each stack around the mean profile is smaller than the di↵erence

between the cool and non-cool-core profiles, indicating a stable

bimodality. This can be clearly seen from the small extent of
the ribbons in Figure 2, which indicate a very small amount
of scatter around the mean in the stack of each cluster over
time. The cool cores are thus a much more significant feature
than short term fluctuations in the profiles. The non-cool-core
profiles from ACCEPT and Rhapsody agree well within their
respective scatter, for both the electron density profiles and the
entropy profiles. The ACCEPT cool-core clusters however show
a much weaker cool core than the Rhapsody CC clusters: the
observed clusters show only a moderate increase in core electron
density inside the innermost ⇠ 50 kpc, while the Rhapsody

cool cores show a strong drop in entropy and increase in electron
density already at scales of . 150 kpc. It is clear that the cool
core systems are most likely still undergoing overcooling to
some degree despite the central AGN that is e�ciently fuelled
during the CC phase. The CC/NCC dichotomy is thus a long
lived property of our clusters, consistent with the observational
constraints of e.g. McDonald et al. (2013). The dichotomy arose
naturally in a larger sample of cosmological cluster simulations
and can be explained by di↵erences in the assembly history
and nature of major mergers of the clusters (see our analysis
in Section 4).

Interestingly, outside the core, the temperature profiles
show a somewhat discrepant temperature at large radii, specif-
ically a ⇠ 30 per cent di↵erence in X-ray temperature at
& 200 kpc, with much better agreement at smaller radii. Upon
closer inspection one notices that a similar but slightly weaker
o↵set also exists in the power-law part of the entropy profile,
where the simulated profiles are systematically o↵set to lower
entropy. A similar discrepancy can be seen also, e.g., in Figure 7
of Dubois et al. (2011), independently of the much larger range
of subgrid models employed in that reference. This may point
towards additional physics missing from these simulations.

In order to investigate better the nature of the cool cores,
in Figure 3, we plot cooling and free-fall time profiles (c.f. also
Fig. 9 of Li et al. 2015). We see that for the non-cool core
systems, the cooling time is at least a factor of 10 above the free-
fall time in the core, while for the cool core systems, the two
time scales are much closer to each other. Normally the central
AGN should increase the central cooling time dramatically,
but it appears to not prevent the formation of cool cores in
four of our systems. This is despite a dramatic growth that the
central black hole undergoes in the CC cases. For one of them,
RG 545, we demonstrate in Section 7.1 that the existence of the
cool core does not depend on the details of the AGN feedback

c� 0000 RAS, MNRAS 000, 000–000
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for each cluster while occupying the same mass range as the ACCEPT
subset. The shaded ribbons indicate the 1� scatter in each stack,
reflecting time variations in the profiles. We excluded the fossil
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selected ACCEPT sub-sample and stacked profiles from the
Rhapsody sample. For each simulated cluster, we show the
mean profile as well as the standard deviation around that
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of scatter around the mean in the stack of each cluster over
time. The cool cores are thus a much more significant feature
than short term fluctuations in the profiles. The non-cool-core
profiles from ACCEPT and Rhapsody agree well within their
respective scatter, for both the electron density profiles and the
entropy profiles. The ACCEPT cool-core clusters however show
a much weaker cool core than the Rhapsody CC clusters: the
observed clusters show only a moderate increase in core electron
density inside the innermost ⇠ 50 kpc, while the Rhapsody

cool cores show a strong drop in entropy and increase in electron
density already at scales of . 150 kpc. It is clear that the cool
core systems are most likely still undergoing overcooling to
some degree despite the central AGN that is e�ciently fuelled
during the CC phase. The CC/NCC dichotomy is thus a long
lived property of our clusters, consistent with the observational
constraints of e.g. McDonald et al. (2013). The dichotomy arose
naturally in a larger sample of cosmological cluster simulations
and can be explained by di↵erences in the assembly history
and nature of major mergers of the clusters (see our analysis
in Section 4).

Interestingly, outside the core, the temperature profiles
show a somewhat discrepant temperature at large radii, specif-
ically a ⇠ 30 per cent di↵erence in X-ray temperature at
& 200 kpc, with much better agreement at smaller radii. Upon
closer inspection one notices that a similar but slightly weaker
o↵set also exists in the power-law part of the entropy profile,
where the simulated profiles are systematically o↵set to lower
entropy. A similar discrepancy can be seen also, e.g., in Figure 7
of Dubois et al. (2011), independently of the much larger range
of subgrid models employed in that reference. This may point
towards additional physics missing from these simulations.

In order to investigate better the nature of the cool cores,
in Figure 3, we plot cooling and free-fall time profiles (c.f. also
Fig. 9 of Li et al. 2015). We see that for the non-cool core
systems, the cooling time is at least a factor of 10 above the free-
fall time in the core, while for the cool core systems, the two
time scales are much closer to each other. Normally the central
AGN should increase the central cooling time dramatically,
but it appears to not prevent the formation of cool cores in
four of our systems. This is despite a dramatic growth that the
central black hole undergoes in the CC cases. For one of them,
RG 545, we demonstrate in Section 7.1 that the existence of the
cool core does not depend on the details of the AGN feedback
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What’s next?



Open questions
• Do we fully understand galaxy formation in a cosmological 

context? 

• Do we reproduce realistic populations of galaxies? 

• Are simulated galaxies realistic at all times? 

• How do primordial galaxies look like? 

• How do internal processes modify galaxies and their 
surroundings? 

• A lot more…



Galaxy Formation Studies

“Small scale” processes  
influence the big picture. 

We can’t simply throw  
more resolution at the problem. 

~1’000’000 pc

~50’000 pc

<1 pc



Example: stellar explosions in 
a galaxy

Martizzi+ 2016 



Higher Resolution

Physical modeling: 
• Interstellar/intergalactic 

gas. 
• Star formation. 
• Stellar explosions. 
• Radiation transfer. 
• High energy processes. 
• Black hole physics.

Scientific Computing: 
• More accurate N-body

+CFD methods. 
• New architectures (CPUs, 

GPUs, Coprocessors),  
• Code optimization. 
• New data management 

strategies.



More accurate methods

AGORA comparison project (Kim+ 2016) 

Different methods/codes can give different  
qualitative/quantitative results.  

We need to assess the limits of current methods and  
design better ones!



A note on parallelization
Most available codes use  

domain decomposition + MPI communication.

Computational  
box

0 1 2 3Data sent to CPUs

0 1 2 3Operations on CPUs

0 1 2 3MPI communications



Better parallelization
MPI-based parallelization can have problems with:  
• Load balancing. 
• Synchronization.  
• Speed of the CPUs. 

Proposed solutions, work in progress: 
• Better load balancing/domain decomposition schemes. 
• Hybrid MPI+OpenMP parallelization. With coprocessors? 
• GPGPU computing on GPU clusters.  
• ??? 

A lot of work!  
Some algorithms (e.g. tree methods) are not easily  

portable to new architectures!



Sharing and data management
Computation can be a bottleneck but data management 
challenges are extremely important: 

• Huge simulations -> ~100 TB of data. 
• Data cannot be easily transferred. Public databases? 
• Is it cheaper to re-run a simulation or to keep the data? 

This is science -> Results from simulations have to be 
reproducible by anyone. Possible solutions: 

• Public simulation codes + initial conditions. 
• Private codes + public simulation databases. 



Visualization

To appear in an IEEE VGTC sponsored conference proceedings

A Novel Approach to Visualizing Dark Matter Simulations
Ralf Kaehler, Oliver Hahn, and Tom Abel

Fig. 1: The density distribution rendered from a dark matter simulation using the tetrahedral tessellation approach applied in
this paper. Large-scale structures like sheets (gray), filaments (yellow) and halos (white), as well as caustics on smaller scales
(close-up), become clearly visible.

Abstract—In the last decades cosmological N-body dark matter simulations have enabled ab initio studies of the formation of structure
in the Universe. Gravity amplified small density fluctuations generated shortly after the Big Bang, leading to the formation of galaxies in
the cosmic web. These calculations have led to a growing demand for methods to analyze time-dependent particle based simulations.
Rendering methods for such N-body simulation data usually employ some kind of splatting approach via point based rendering
primitives and approximate the spatial distributions of physical quantities using kernel interpolation techniques, common in SPH
(Smoothed Particle Hydrodynamics)-codes. This paper proposes three GPU-assisted rendering approaches, based on a new, more
accurate method to compute the physical densities of dark matter simulation data. It uses full phase-space information to generate
a tetrahedral tessellation of the computational domain, with mesh vertices defined by the simulation’s dark matter particle positions.
Over time the mesh is deformed by gravitational forces, causing the tetrahedral cells to warp and overlap. The new methods are well
suited to visualize the cosmic web. In particular they preserve caustics, regions of high density that emerge, when several streams
of dark matter particles share the same location in space, indicating the formation of structures like sheets, filaments and halos. We
demonstrate the superior image quality of the new approaches in a comparison with three standard rendering techniques for N-body
simulation data.

Index Terms—Astrophysics, dark matter, n-body simulations, tetrahedral grids.

1 INTRODUCTION

Starting with studies of the dynamics of clusters of galaxies by Zwicky
in the early 30’s of the last century [35], lots of observational evidence
has been gathered, suggesting that the luminous matter in the Universe,
including objects like gas clouds and stars, comprises only a tiny frac-
tion of its total mass. Most of the mass in the Universe is thought to be
cold dark matter. “Cold” because it moves at non–relativistic speeds
and dark because it does not interact with photons, and thus does not
emit or absorb light, so that its presence can only be measured through
its gravitational influence on ordinary matter. Some promising candi-
dates to explain its nature are provided by particle physics. The most
popular is a light neutralino suggested by super–symmetric extensions
of the standard model of particle physics.

Dark matter is the key ingredient in the formation of the large-
scale structure in the Universe, which arise from small density fluctua-
tions. These are thought to have originated from quantum fluctuations

• Ralf Kaehler is with KIPAC/SLAC, E-mail: kaehler@slac.stanford.edu.
• Oliver Hahn is with Stanford/SLAC, E-mail: ohahn@stanford.edu.
• Tom Abel is with KIPAC/SLAC, E-mail:tabel@slac.stanford.edu.

and were stretched to macroscopic scales during an early inflationary
epoch shortly after the Big Bang. Dark matter can then be thought of
as a gas in which the particles do not collide. To study its evolution, N-
body simulations, originally developed in plasma physics and for stel-
lar dynamics, are being used [6, 26]. The outcome of such simulations
allow for comparison with observational data of the large–scale distri-
bution of galaxies, as for example the Sloan Digital Sky Survey [1]. In-
deed, comparing such simulations with observational data dominates
how the standard model of structure formation is being tested. The
simulation codes usually treat dark matter as a collisionless gas sam-
pled by a discrete number of tracer particles of equal mass. These
are propagated over time by the aggregated gravitational forces acting
on each particle. Different numerical methods predominantly differ in
how they compute the overall gravitational forces in the computation
domain.

Most previous visualizations of such simulations projected each
particle separately into screen space, using different kernel profiles
and methods to scale the splat sizes, usually based on certain local in-
terpolation schemes for the physical quantities. One method that is
particularly popular is based on gathering the nearest n-neighbors for
each particle and use adaptive kernel smoothing to obtain a mass den-
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Useful for: 
• Intuitive communication of scientific results. 
• Intuition-driven discoveries. 
• Public outreach and education. 



Summary
• We have a well establish framework for studying cosmic 

structure formation with numerical simulations. 

• Many solutions in scientific computing have been used to 
develop this field. 

• Observation + theory + simulation = deeper understanding 
of cosmic structure formation. 

• Many open problems: need for better physical modeling + 
new technologies.


