UC Berkeley, November 16, 2016

Solving cosmic structure formation with computational methods Davide Martizzi Astronomy Department UC Berkeley

Overview of this talk

- Motivation for this research.
- Basic concepts of the theory of cosmic structure formation.
- Simulation techniques and challenges in the field.

The Milky Way

1 pc = 3.0857 x 10¹⁶ m 8 kpc = 2.5 x 10²⁰ m

Galaxy Groups and Clusters

Hickson Group Galaxy Group <50 galaxies. Virgo Cluster Galaxy Cluster Up to ~100 galaxies. Sizes up to a few Mpc.

Large Scale Structure

Cosmic Web

This is how the Universe looks like on scales ~100 Mpc.

There is a hierarchy of structures of different sizes that constitute our Universe.

Sloan Digital Sky Survey (SDSS)

Cosmological Structure Formation

Understanding structure formation in the context of an evolving universe.

It's a work in progress that requires:

- Observations to characterize the "ingredients" of the Universe.
- A theory for structure formation.
- Calculations to make testable predictions from the theory.

Big Bang Cosmology

Cosmic Microwave Background Anisotropies

Growth of primordial perturbations

Simple model of the Universe

Dark Matter Ordinary Matter (electrons, atomic nuclei)

A series of hypotheses based on observational evidence:

- The Universe expands.
- Dark Matter only interacts gravitationally and dominates the growth of cosmic structure.
- Ordinary Matter can be neglected to zero-th order.

Dark Matter Dynamics

Gravity is a long-range force.

Dark Matter particles respond to the gravitational potential generated by the global distribution of Dark Matter.

 $\nabla^2 \Phi = 4\pi G \rho$ Poisson's Equation

 $\mathbf{F}(\mathbf{x}) = -\nabla \Phi(\mathbf{x}) \quad \text{Gravitational force}$

Dark Matter Dynamics

Dark Matter particles only see the global gravitational potential.

 $f(\mathbf{x}, \mathbf{v}, t)$ = Probability for a dark matter particle of having velocity **v** while being at position **x**.

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \dot{\mathbf{x}}\frac{\partial f}{\partial \mathbf{x}} - \nabla \Phi \frac{\partial f}{\partial \mathbf{v}} = 0 \qquad \text{Boltzmann Equation}$$

 $\rho = \int f d^3 \mathbf{v}$ Dark Matter 3D - Density

 $\nabla^2 \Phi = 4\pi G \rho$

Poisson's Equation for the gravitational potential

Problems, problems, problems...

 $\frac{df}{dt} = \frac{\partial f}{\partial t} + \dot{\mathbf{x}}\frac{\partial f}{\partial \mathbf{x}} - \nabla \Phi \frac{\partial f}{\partial \mathbf{y}} = 0 \qquad \text{Boltzmann Equation}$

1. BE is a non-linear integro-differential equation in 6d. General non-trivial solutions are hard to find!

2. Solutions for cosmic structure formation have to be accurate over a huge dynamic range.

From galaxies... To clusters...

To the LSS.

Cosmological Simulations

Initial conditions motivated by Big Bang theory.

A snapshot of a simulated universe at a given time.

Can be compared to observations to test theory!

N-body approach

Discretization of the 6-D distribution of DM.

Typical algorithm for DM dynamics

Number of bodies and resolution

N~100 particles (Toomre & Toomre 1972)

N~10⁸ particles (Hopkins et al. 2011)

Better resolution -> More precise predictions. Large N -> High computational cost.

Fast algorithms required!

Direct summation

What's the gravitational force acting on a particle?

$$\mathbf{F}_{i} = \sum_{j}^{N} \frac{Gm_{i}m_{j}(\mathbf{x}_{j} - \mathbf{x}_{i})}{|\mathbf{x}_{i} - \mathbf{x}_{j}|^{3}}$$

It requires $O(N^2)$ operations per time step.

Bottleneck for large **N**!

Particle Mesh Methods

$$\nabla^2 \Phi = 4\pi G \rho$$

Scaling O(*N*_{mesh} ln(*N*_{mesh}))

Tree Methods

Step 1: Organize particles in a tree structure.

Oct tree, Barnes & Hut, 1986

Step 2: walk the tree and sum force contribution from tree branches.

Standard tree code scaling: ~O(*N* ln(*N*))

Modern techniques as fast as O(N).

Modern simulations

- Include both Dark and Ordinary Matter. Require combination of N-body and Computational Fluid Dynamics methods. Better physical modeling.
- 10⁶-10¹² bodies. Better scaling of the algorithms.
- 10⁵-10⁷ CPU hours on computing clusters. Code parallelization.
- 10-100 TB of data to analyze. Big Data.
- Performed with optimized "community" codes. Open source vs.
 "limited access" codes.

Where do we run the simulations?

Example:

- ~200000 CPUs.
- GPU nodes.
- ~800 TB of memory.
- 6.28 Pflop/s.

See also XSEDE (NSF).

Pleiades supercomputer at NASA's Ames Research Center

Millenium Run

Springel et al. (2005).

What can we learn?

Ordinary Matter does not exactly trace Dark Matter.

Martizzi+ 2016

Videos by: Pawel Biernacki

SOB

Hahn+ 2016

What's next?

Open questions

- Do we fully understand galaxy formation in a cosmological context?
- Do we reproduce realistic populations of galaxies?
- Are simulated galaxies realistic at all times?
- How do primordial galaxies look like?
- How do internal processes modify galaxies and their surroundings?
- A lot more...

Galaxy Formation Studies

~50'000 pc

"Small scale" processes influence the big picture.

We can't simply throw more resolution at the problem.

Example: stellar explosions in a galaxy

Martizzi+ 2016

Higher Resolution

Physical modeling:

- Interstellar/intergalactic gas.
- Star formation.
- Stellar explosions.
- Radiation transfer.
- High energy processes.
- Black hole physics.

Scientific Computing:

- More accurate N-body +CFD methods.
- New architectures (CPUs, GPUs, Coprocessors),
- Code optimization.
- New data management strategies.

More accurate methods

AGORA comparison project (Kim+ 2016)

Different methods/codes can give different qualitative/quantitative results.

We need to assess the limits of current methods and design better ones!

A note on parallelization

Most available codes use domain decomposition + MPI communication.

Better parallelization

MPI-based parallelization can have problems with:

- Load balancing.
- Synchronization.
- Speed of the CPUs.

Proposed solutions, work in progress:

- Better load balancing/domain decomposition schemes.
- Hybrid MPI+OpenMP parallelization. With coprocessors?
- GPGPU computing on GPU clusters.
- ???

A lot of work!

Some algorithms (e.g. tree methods) are not easily portable to new architectures!

Sharing and data management

Computation can be a bottleneck but data management challenges are extremely important:

- Huge simulations -> ~100 TB of data.
- Data cannot be easily transferred. Public databases?
- Is it cheaper to re-run a simulation or to keep the data?

This is science -> Results from simulations have to be reproducible by anyone. Possible solutions:

- Public simulation codes + initial conditions.
- Private codes + public simulation databases.

Visualization

Useful for:

- Intuitive communication of scientific results.
- Intuition-driven discoveries.
- Public outreach and education.

Summary

- We have a well establish framework for studying cosmic structure formation with numerical simulations.
- Many solutions in scientific computing have been used to develop this field.
- Observation + theory + simulation = deeper understanding of cosmic structure formation.
- Many open problems: need for better physical modeling + new technologies.