Upgrading the CMB foreground and lensing analysis: improved halo models and a global minimum variance quadratic estimator

Maniyar Abhishek Sanjay CCPP (NYU)

Cosmology seminar, UC Berkeley 19th October 2021

CIB, tSZ, CIB x tSZ

CIB Clustering on linear scales: a signal

Maniyar, Béthermin, Lagache A&A, 2018

Cosmic Infrared Background (CIB)

- Cumulative IR emission from dusty star forming galaxies throughout the cosmic history
- CIB galaxies clustered in the host dark matter halos
 - + Anisotropies in the CIB
- CIB anisotropies => Trace the large scale distribution of dusty star forming galaxies => underlying dark matter distribution

Maniyar Abhishek Sanjay, CCPP-NYU

Star formation rate density history

Maniyar Abhishek Sanjay, CCPP-NYU

Dark matter halo mass for the CIB emitters

ISW (dark energy) through CIB-CMB cross-correlation

Maniyar, Lagache, Béthermin A&A, 2019

ISW in the CMB power spectrum

- Integrated Sachs-Wolfe effect Really small!
- Cross-Correlation with LSS tracers
- SNR going up to 4

Real CIB & CMB maps: Null test

On large scales, CIB and CMB combination: a cosmological signal What about small scales?

It's complicated!

CMB power spectrum on small scales: very complicated indeed!

Maniyar Abhishek Sanjay, CCPP-NYU

Why kSZ? => A reionization probe!

Measuring the kSZ power spectrum from the CMB data

In collaboration with: Matthieu Tristram, Guilaine Lagache, Xavier Garrido

kSZ and the foregrounds in the CMB power spectrum: challenging!

Abhishek Maniyar, CCPP (NYU)

kSZ and the foregrounds correlations

Data quality getting better and better (SO, CMB Stage-4)! => Need precise and reliable models!

Abhishek Maniyar, CCPP (NYU)

Current approach and limitations

- Power law/best fit templates for the CIB, tSZ, and CIB x tSZ
- Different frequency channels assumed to be perfectly correlated for the CIB
- Inconsistencies between the CIB, tSZ and CIB x tSZ templates
 - Cosmology dependance

What we need

- Physically motivated halo model for the CIB and tSZ
- Consistent halo model for CIB-tSZ correlation
- Cosmology dependance explicitly considered
- Combining different frequency data (Planck, SPT, and ACT; Herschel, Planck HFI)

Halo model required

Previous halo models

- L-M relation (Shang et al 2012)
- High number of parameters
- Results not consistent with data => SFRD

Accretion on the dark matter halos to SFR

Accretion on the dark matter halos to SFR

SFR =>
$$\frac{dj_{\nu}}{d\log M}(M,z) \Rightarrow C_{\ell}^{\nu,\nu'}$$

- Evolution in width of the lognormal up to a redshift
- Massive halos at lower redshift inefficient star formation (e.g. Popesso et al. 2015)
- Massive halos at high redshift can have efficient star formation (e.g. Miller et al. 2018)

Fitting both Planck and Herschel data & consistent with data for SFRD

Maniyar, Lagache, Béthermin, A&A, 2021

tSZ halo model (both 1-halo and 2-halo terms)

CIB x tSZ correlation

- CIB => tracing the large scale structure
- tSZ => hot electrons in the galaxy clusters => large scale structure
- CIB galaxies residing in the clusters contributing to the tSZ => one halo term
- Overlap in the redshift distribution of the CIB and the tSZ => two halo term

Redshift distribution: CIB x tSZ power spectra

Maniyar Abhishek Sanjay, CCPP-NYU

Our approach

- ✓ Physically motivated halo model for the CIB and tSZ
- ✓ Consistent halo model for CIB-tSZ correlation
- ✓ High-*l* Likelihood on Polarized Power spectra (HiLLiPOP) likelihood
- ✓ Combining different frequency data (Planck, SPT, and ACT for the CMB; Herschel/Spire, Planck/HFI for the CIB)
- ✓ COBAYA toolbox for MCMC
 - ✓ Replacing old templates for foregrounds with halo models
 - ✓ Cosmology dependance of all the foregrounds explicitly considered at every step
 - Integrating SPT likelihood

Next steps

- Combined MCMC with Planck, ACT, SPT, Herschel data
- kSZ power spectrum
- Reionisation constraints

Doppler boosted emission from the CIB galaxies: A signal and a foreground

In collaboration with: Emmanuel Schaan & Simone Ferraro

Analogous to kSZ

$$\frac{\Delta I(\nu_0)}{I(\nu_0)} \equiv \frac{I^{\text{obs}}(\nu_0) - I^{\text{obs}}(\nu_0)|_{\beta=0}}{I^{\text{obs}}(\nu_0)|_{\beta=0}} = \beta \left(3 - \frac{d \ln I^{\text{obs}}(\nu_0)}{d \ln \nu_0}\right) \longrightarrow \alpha$$

Preliminary results!

CIB exp	Galaxy exp	SNR	
Planck 545 (857) GHz	CMASS	0.05 (0.19)	
	DESI-ELG	0.70(1.78)	
	DESI-LRG	0.35(0.99)	
CCAT-Prime 545 (857) GHz	CMASS	1.87(6.48)	
	DESI-ELG	23 (52)	
	DESI-LRG	12(31)	

SNR on
$$C_{\ell}^{\Delta I_{\nu_0}q_{\gamma}}$$

Velocity weighted density field

$$\frac{\Delta I(\nu_0)}{I(\nu_0)} \equiv \frac{I^{\text{obs}}(\nu_0) - I^{\text{obs}}(\nu_0)|_{\beta=0}}{I^{\text{obs}}(\nu_0)|_{\beta=0}} = \beta \left(3 - \frac{d \ln I^{\text{obs}}(\nu_0)}{d \ln \nu_0}\right) \longrightarrow \alpha$$

Signal & foreground!

- Signal:
 - + Can estimate β
 - Potential to constrain $f_{NL}!$

* kSZ:
$$\frac{\Delta T}{T} = \alpha \tau \beta$$

- + Here: $I(\nu_0)$ calibratable
- As foreground: contaminant to kSZ!

$$\frac{\Delta I(\nu_0)}{I(\nu_0)} \equiv \frac{I^{\text{obs}}(\nu_0) - I^{\text{obs}}(\nu_0)|_{\beta=0}}{I^{\text{obs}}(\nu_0)|_{\beta=0}} = \beta \left(3 - \frac{d \ln I^{\text{obs}}(\nu_0)}{d \ln \nu_0}\right) \longrightarrow \alpha$$

Weak lensing of the CMB: a global minimum variance quadratic estimator

In collaboration with: Yacine Ali-Haïmoud, Julien Carron, Antony Lewis, Mat Madhavacheril Phys. Rev. D103, 083524 (2021)

Weak lensing of the CMB

- Distribution of the foreground matter fluctuations deflects CMB photons
- What we see is a distorted CMB map
- Reconstructing lensing potential: projected matter field

Quadratic estimators

• •

$$\langle x^{0}(\mathbf{l})x^{0}(\mathbf{l}')\rangle \equiv (2\pi)^{2}\delta(\mathbf{l}-\mathbf{l}')C_{\ell}^{0} \xrightarrow{\text{No}} \text{Different multipoles uncorrelated} x^{0} = T, E, B$$

$$\langle x(\mathbf{l})x'(\mathbf{l}')\rangle_{\text{fixed }\phi} = f_{\alpha}(\mathbf{l},\mathbf{l}')\phi(\mathbf{L}) \xrightarrow{\text{lensing Lensing induces correlations between different multipoles!}}
\mathbf{L} = \mathbf{l} + \mathbf{l}' \quad \mathbf{l} \neq -\mathbf{l}' \quad x, x' = T, E, B \alpha = \{TT, TE, EE, TB, EB, BB\}$$

$$\phi(\mathbf{L}) \propto \int_{\mathbf{l}\neq\mathbf{l}'} F(\mathbf{l},\mathbf{l}')x(\mathbf{l})x'(\mathbf{l}')$$

- Appropriate average of pairs of multipoles can be used to estimate the deflection field!
- Pairs of multipoles => quadratic estimator!

Several Quadratic Estimators of the CMB weak lensing

HO02

$$\hat{\phi}(\boldsymbol{L}) \propto \int_{\boldsymbol{l}_1 \neq \boldsymbol{l}_2} F_{XY}(\boldsymbol{l}_1, \boldsymbol{l}_2) X(\boldsymbol{l}_1) Y(\boldsymbol{l}_2)$$

- 5 minimum variance estimators: $\hat{\phi}_{TT}$, $\hat{\phi}_{EE}$, $\hat{\phi}_{TE}$, $\hat{\phi}_{TB}$, $\hat{\phi}_{EB}$
- Final estimator: minimum variance linear combination of individual estimators

 $\hat{\phi}_{\text{HO02}} = w_{TT}\hat{\phi}_{TT} + w_{EE}\hat{\phi}_{EE} + w_{TE}\hat{\phi}_{TE} + w_{TB}\hat{\phi}_{TB} + w_{EB}\hat{\phi}_{EB}$ $w_{TT} + w_{EE} + w_{TE} + w_{TB} + w_{EB} = 1$

HO02: SO-like experiment

- HO02 consider the correlations between different XY pairs **after** integrating over 1_1 and 1_2
- GMV: Account for these correlations at each 1_1 and 1_2
- Less noisy than HO02 and best possible minimum variance quadratic estimator!

$$\phi_{\rm mv} \propto \int \left(F_{TT}T(\mathbf{l})T(\mathbf{l}') + F_{EE}E(\mathbf{l})E(\mathbf{l}') + F_{TE}T(\mathbf{l})E(\mathbf{l}') + F_{TB}T(\mathbf{l})B(\mathbf{l}') + F_{EB}E(\mathbf{l})B(\mathbf{l}') \right)$$

GMV

GMV

HO02

$$\hat{\phi}(\boldsymbol{L}) = \int_{\boldsymbol{l}_{1}\neq\boldsymbol{l}_{2}} X^{i}(\boldsymbol{l}_{1}) \Xi_{ij}(\boldsymbol{l}_{1},\boldsymbol{l}_{2}) X^{j}(\boldsymbol{l}_{2}), \qquad \int_{\boldsymbol{l}_{1}\neq\boldsymbol{l}_{2}} F_{XY}(\boldsymbol{l}_{1},\boldsymbol{l}_{2}) X(\boldsymbol{l}_{1}) Y(\boldsymbol{l}_{2})$$
$$[\boldsymbol{\Xi}(\boldsymbol{l}_{1},\boldsymbol{l}_{2})] = \frac{\lambda(L)}{2} [\boldsymbol{C}_{l_{1}}]^{-1} [\boldsymbol{f}(\boldsymbol{l}_{1},\boldsymbol{l}_{2})] [\boldsymbol{C}_{l_{2}}]^{-1} \qquad F_{XY}(\boldsymbol{l}_{1},\boldsymbol{l}_{2}) = \lambda_{XY}(L) \ \frac{f_{XY}(\boldsymbol{l}_{1},\boldsymbol{l}_{2})}{(1+\delta_{XY})C_{l_{1}}^{XX}C_{l_{2}}^{YY}}$$

- C_l and $f(l_1, l_2) : 3 \ge 3$ symmetric matrices
- Separable in l_1 and l_2 without any approximations! => FFT
- Previously derived, but erroneously described as equivalent to HO02 estimator!!

GMV: SO-like experiment

- 8-10% smaller noise than HO02 on small L
- More information out of the same maps!

Abhishek Maniyar, CCPP (NYU)

SQE

$$\hat{\phi}(\boldsymbol{L}) = \int_{\boldsymbol{l}_1 \neq \boldsymbol{l}_2} X^i(\boldsymbol{l}_1) \Xi_{ij}(\boldsymbol{l}_1, \boldsymbol{l}_2) X^j(\boldsymbol{l}_2), \qquad [\boldsymbol{\Xi}(\boldsymbol{l}_1, \boldsymbol{l}_2)] = \frac{\lambda(L)}{2} [\boldsymbol{C}_{l_1}]^{-1} [\boldsymbol{f}(\boldsymbol{l}_1, \boldsymbol{l}_2)] [\boldsymbol{C}_{l_2}]^{-1}$$

- Planck (2016, 2020) and SPT (2019) use an approximated version: SQE
- $C_l^{TE} = 0$ in C_l
- Allows to deal with cut-sky setup with lower computational cost
- Preserves separability in l_1 and l_2
- 3% noise penalty for Planck
- Suboptimal to HO02 as well!

Comparison of all estimators

- SQE to GMV difference:
 - 3-6% for Planck-like experiments
 - 11-12% for SO-like experiments
- Should motivate use of full covariance matrix rather than setting $C_l^{TE} = 0$

Application to LIM: interloper-free "LIM-pair" lensing

In collaboration with: Emmanuel Schaan & Anthony Pullen

arXiv:2106.09005

Abhishek Maniyar, CCPP (NYU)

Weak lensing of the CMB/LIM/Galaxies

1100

LIM Lensing: issues!

- Non-linear nature of the LIM biases the inferred lensing from LIM
 - ➡ Bias hardened estimators (Foreman et al. 2018)
 - Modifying lensing weights to to down-weigh mode combinations coupled through nonlinear effects (Schaan et al. 2018)
- Continuum foregrounds like CIB or the Milky Way
 - Avoided by discarding the 3D Fourier modes with low k_{\parallel}
- Interlopers?
 - ➡ Have not been addressed for LIM lensing
 - $\Rightarrow \text{ Bias the signal} \Rightarrow C_L^{\kappa\kappa}$

LIM Lensing

"LIM-pair" lensing!

"LIM-pair" lensing!

Abhishek Maniyar, CCPP (NYU)

"LIM-pair" lensing!

Abhishek Maniyar, CCPP (NYU)

"LIM-pair" lensing: probing high redshift Universe with nulling technique

Can we detect this? $C_L^{\hat{\kappa}_{\text{null}}\hat{\kappa}_{\text{CMB}}}$: Yes! (Futuristic!)

- $f_sky = 40\%$
- Would be possible to detect this signal
- Angular resolution should not be an issue

SFRD from different models/measurements

Optimistic: ISW SNR (100% sky, no dust) forecast

Maniyar Abhishek Sanjay, CCPP-NYU

ISW SNR (10% dust residuals)

Freq. (GHz)	217	353	545	857	3000
$\frac{(0.112)}{SNR}$	1.46	1.51	1.41	1.14	0.52
20% 1_{sky} SNR 40% f	1.16	1.16	0.99	0.69	0.27
$\frac{40\%}{\mathrm{SNR}}$	0.92	0.90	0.74	0.49	0.18
$\frac{5070 r_{sky}}{SNR}$	0.80	0.78	0.63	0.42	0.16
SNR 80% false	0.59	0.57	0.45	0.30	0.11

Maniyar Abhishek Sanjay, CCPP-NYU

Experimental specs

Experiment	$\ell_{\rm max}$	Δ_T	Δ_P	σ
		$\mu \text{K-arcmin}$	μ K-arcmin	arcmin
Planck	3000	35.0	60.0	5.0
SO	3000	8.0	$8.0\sqrt{2}$	1.4
CMBS4	3000	1.0	$1.0\sqrt{2}$	1.0

TABLE II: Experimental specifications used in this work.

$$\ell_{\max}^T = \ell_{\max}^P$$