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Cosmology & galaxy clusters

. - s - NASA: A2218
- Galaxy clusters are the heaviest and (SNSRI L
most recently assembled virialized  |HREEEENUNEE " S g
objects.

- Their abundance and spatial
distribution are sensitive to
cosmological parameters, and in
particular the amount and properties
of dark energy.

- Clusters can be observed in optical
(galaxies), X-ray (diffuse gas), and
microwave (SZ effect).

- Observational campaigns have just
started, or will start soon (SPT, ACT,
Planck, DES, VISTA, LSST, eROSITA).




Two cluster surveys

eROSITA wide survey:

- X-ray ewission

- Band: 0.5-9 keV

- Start date: 2012

- Sky coverage: 20,000 deg?
- Swin = 3.3X1014 erg/em?s

South Pole Telescope:

- Sunyaev-Zel'dovich effect
- Band: 95/150/220 GHz

- Start date: 2008

- Sky coverage: 4000 deg?
- szin =10 uK




Early vs. late dark energy

- Standard cosmological scenarios imply that dark energy amount is
negligible at high redshifts.

- However, if we abandon ACPM that need not be the case, and models
where DE is 17 level or more of the total density we call EPE.
- Theory is not a good guide for what model is reasonable; observations
show Npe << 1 for z » 1, and wo =-1.




Park energy perturbations

- Self-consistent treatment of dark energy perturbations
- Consider DE as an additional fluid:
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X-ray vs. SZ survey

ACOM: WMAP7+BAO+H, (Komatsu et al. 2009)
EDEL: wo=-1, EPEZ: wo=-0.9 edge of current EPE constraints (Alam 2010)
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Cosmological sensitivity comes mostly from comoving abundance!




Cluster counts

- EPE wmodels not ruled out by current data can be ruled out using
cluster counts. Constraints on transition redshift!
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SZ power spectrum

- CMB signal at few
arcwminutes scales.

- At high-l, most sensitive
to group of galaxies mass
range (M<10* Mayn).

- Planck full sky survey and
SPT/ACT.

- Pertect removal of
contaminants (e.g. radio
loud galaxies), as well as
104 perfect removal of primary

1 CME.
Alam, Luki¢ and Bhattacharya 2011




MCMC analysis

 Awount of dark energy Epoch of transition Length of transition

Cluster counts

+

CMP

SZ Plk)
CMP

-0.85 -0.8 - -0. -0. -0.85 -0.8

Alam Lukié and Bhattacharya 2011




Theoretical components

- To determine Muwin We need to

know how to calculate mass sy —
from a given obhservable.

- We need theoretical prediction
for comoving abundance of
clusters for any coswmology of
interest.
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Mass function: definitions

- Distribution of masses in - Or in cosmology (and redshift)
the Universe: dn/dM “independent” way Wenkins et al.
2001, =207 accurate):
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Precision issue

- In previous considerations
we were looking for relative
difference between
coswmologies. But we do need tfo
have absolute predictions to
best-fit observations.

- To make it subdominant
source of error MF has to be
calibrated to about 1% (Wu et
al. 10, Cunha & Evrard 10).
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Precision issue

- In previous considerations
we were looking for relative
difference between
coswmologies. But we do need tfo
have absolute predictions to
best-fit observations.

- To make it subdominant
source of error MF has to be
calibrated to about 1% (Wu et
al. 10, Cunha & Evrard 10).

- Achieving that goal is
difficult for the same reason
that makes cluster counts a

good cosmological probe:

exponential sensitivity!
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, simulation challenge
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X 5 realizations for 256" particles

— Average for 256" particles

X

5 realizations for 128 particles

— Average for 128’ particles
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Force resolution (Lukié et al. 2007)




Force resolution & AMK

- Criterion from Lukié et al. 2007:
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Halo mass function

Bhattacharya et al. 2010:

- 30 ACOM (close to WMAP)
simulations

- TreePM codes (high-res)

- b different box sizes

- Total volume 220 Gpe?

- Halos with 500+ particles
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Redshift evolution
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- For practical applications, it =0 daite

is actually more important to TH

have accurate mass function " [-*2=2.0 data

prediction for 0.2¢z<2.5 C
rather than z=0.

Cite)— ; - z2=1.0 fit
£ ——-2=2.0 fit

- 2 out of 4 parawmeters do
not show time evolution.

- See also Tinker et al. 2008
in context of SO halos.




wCPM cosmologies

- 36 wCUM coswologies sampling 9 parameters of interest: Qm, 28, o,
w, h (Heitmann et al. 2009).

- Gadget-2, 1.3Gpc on a side, =5 X 1 019M,,, particle mass, 90kpe softening
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Bhattacharya et al. 2010




isodensity

all extracted particles
particles in FoF halo
overdensity radius Rzoo

From simulation
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(Lukié et al. 2009)
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Are clusters spheres?

ZW1953,7=0.38 CLO0152-13, z=0.83

. - Chandra observations,
published in Jeltema et al.

A1413,7=0.14 V1121423, 2=0.56 20 05

- Clearly, clusters are not
always round and relaxed.

- This is without even
accounting for projection

RXJ0439+05, 2=0 21 RXJ17164+67. =0 81 foe cts.
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Lukié et al. 2011, in prep.




Merging vs. isolated halos

- Halos form hierarchically in
COM coswologies - smaller mass
halos form first and then merge

to form heavier halos.

174 Mpc/h—
512 Mpc/h—

halo.37070

halo.227513




Fraction of merging halos

- Fraction of halos we classify as being in some phase of merger, based on
how displaced is center of mass from gravitational potential minimuwm.
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Mass-observable relations

- Richness-mass
(High et al. 2010)

Maoo(€) (h™'Mo)

- X-ray luminosity- .
-0 -mass; Ys-mass mass (Vikhlinin et -~

(Rines et al. 2010) al. 2009)




SEVERAL SLIDES WITH
UNPUBLISHED WORK HAVE

BEEN REMOVED




Sumwmary

- Perturbations in dark energy sector cannot simply be neglected,
especially if w is allowed to evolve.

- Cluster redshift distribution data will significantly improve
constraints on early dark energy.

- We have a 5% accurate fit for the mass function (FoF b=0.2 halos).

- Redshift dependence matters in A-dominated phase, and has to be
explicitly accounted for.

- wCPM cosmologies are within 5-10%Z of ACPM fit throughout
mass & redshift range relevant for cluster surveys.

- Fraction of wmerging halos can be a good test of cosmology, as it
does not suffer completeness issue.

- We provide observationally motivated way to define clusters as
“merging” and “relaxed”. 1t leads fo improvement of wass-
observable scatter for “relaxed” sample.







