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Outline
Who cares about primordial non-Gaussianity?

What kinds of signatures are in large-scale 
structure and how do we model them?

Conclusions

(i) Halo mass function
(ii) Halo clustering 
(iii) Halo stochasticity

(i) What is Gaussian?
(ii) Three simple models of non-Gaussianity: fNL, gNL, τNL



Who cares?



* We see structure around us and we 
should quantify how it looks

* We have a compelling framework for 
how structure arose (inflation) but limited 

handles on microphysical models

time + gravity
inflationary 

perturbations
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Different models make different predictions for 
statistics of perturbations 



Planck

SPT

ACT

SDSS

DES HETDEX

see e.g. Shandera, Dalal, Huterer 2010
Oguri and Takada 2010

many more . . .Carbone, Verde, Matarrese 2009



Statistics of initial 
perturbations?



Statistics of initial perturbations 
a realization of a random field, Φ

Φ value

probability

two-point function: 

one-point PDF: 

k2PΦ(k) 

k 

power per mode

〈Φ(x)Φ(y)〉↔ PΦ(k)

0.005 0.010 0.015 0.020

3.�10�9

3.5�10�9

4.�10�9

4.5�10�9

5.�10�9

5.5�10�9



Statistics of initial perturbations 
a realization of a random field, Φ

Φ value

probability

two-point function: 

one-point PDF: 

k2PΦ(k) 

k 

power per mode

〈Φ(x)Φ(y)〉↔ PΦ(k)

for a Gaussian field 
this is all there is
〈Φ(x)Φ(y)Φ(z)〉=0

〈Φ(x)Φ(y)Φ(z)Φ(w)〉=〈Φ(x)Φ(y)〉〈Φ(z)Φ(w)〉

all odd N-point functions 
zero, the evens are all given 

by the two-point

+〈Φ(x)Φ(z)〉〈Φ(y)Φ(w)〉
+〈Φ(x)Φ(w)〉〈Φ(y)Φ(z)〉

. . .
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Statistics of perturbations: a non-Gaussian example

Φ(x)=ΦG(x) + fNL (ΦG2(x)-<ΦG2>)

same variance, positive skewness

same variance, negative skewness
Φ value

probability
a Gaussian random field, Φ

(Φ=primordial gravitational potential)

Salopek and Bond 1990; Gangui, Lucchin, Matarrese, Mollerach 1994; Komatsu and Spergel 2001 

-10 < fNL < 74 
WMAP, Komatsu et al 2010

〈Φ(x)3〉~   〈ΦG(x)2〉
2

fNLskewness



Statistics of perturbations
we can get more insight by splitting Φ into short and long wavelength pieces

ΦG= ΦG,s + ΦG,l

which are uncorrelated 

* only strictly true in fourier space, but shouldn’t be a bad approximation 

*

=

Locally, we see small-scale fluctuations

with variance that varies from place to place depending on the value of ΦG,l

contrast w/ Gaussian fields where different scales are uncorrelated!

Slosar, Hirata, Seljak, Ho, Padmanabhan 2008

ΦNG,s = ΦG,s+ fNL (ΦG,s2 -〈ΦG,s2〉)+ 2 fNL ΦG,s ΦG,l 

〈ΦNG,s2〉= 〈ΦG,s2〉(1 + 4 fNL ΦG,l)



positive skewness same variance, negative skewness

Statistics of perturbations

Φ value

probability

SO, for the fNL model,  Φ(x)=ΦG(x)+ fNL (ΦG(x)2-<ΦG2>)
we get a skewness 〈Φ3〉 ≈   〈ΦG2〉
and small scale power that depends on long wavelength fluctuations Φl  
via〈Φs2 〉= 〈ΦG,s2 〉(1 + 4 fNL ΦG,l) 

26fNL

The fNL model just one example, NOT general 



ONE reason this is interesting:

Acquaviva, Bartolo, Matarrese, Riotto 2003; Maldacena 2003; Creminelli & Zaldarriaga 2004
(see also Tanaka, Urakawa 2011)

where  ns = dlnPΦ(k)/dlnk + 4  ≈ 1

single-field inflation predicts 

the so called “consistency relation”

so fNL    few rules it out~>

〈Φ(k)Φ(k’)Φ(k’’-->0)〉≈ (ns-1)(2π)3 δ(k+k’) PΦ(k) PΦ(k’’) 

}≈fNL



Two more non-Gaussian 
models



There’s an extensive literature on “fNL” non-Gaussianity

What about other models?

Φ(x)=ΦG(x)+ fNL (ΦG(x)2-<ΦG2>)

We’ll consider two simple extensions where the non-
Gaussian 4-point function is important:

Φ(x)= ΦG(x)+ gNL (ΦG(x)3-3ΦG(x)<ΦG2>)? “gNL”

(Okamoto and Hu 2002; Enqvist and Nurmi 2005) 

(see also Desjacques and Seljak 2010; Shandera, Dalal, Huterer 2010)

Φ(x)=φG(x)+ σG(x)+ fNL(σG(x)2-<σG2>) ?~

(Lyth and Wands 2002; Ichikawa, Suyama, Takahishi, Yamaguchi (2008); Tseliakhovich, Hirata, Slosar 2010)

“τNL”



what about
Φ(x)= ΦG(x)+ gNL (ΦG(x)3-3ΦG(x)<ΦG2>)?

gNL > 0: positive kurtosis gNL < 0: negative kurtosisGaussian

“gNL”

(Okamoto and Hu 2002; Enqvist and Nurmi 2005) 

Φ value

probability

-12 < gNL /105 < 16
(WMAP, Fergusson et al 2010)

current constraints:

kurtosis:

〈Φ(x)4〉-〈Φ(x)2〉    〈ΦG(x)2〉
3

gNL
2

3 ~



Φ(x)=ΦG(x) + gNL (ΦG3(x)-3<ΦG2> ΦG(x))

〈Φ3〉= 0
this gives

splitting  ΦG= ΦG,s + ΦG,l gives

〈Φs2〉= 〈ΦG,s2〉(1 + 6 gNL ΦG,l2 )

=

locally varying power

“gNL”

no skewness!

kurtosis ∝ gNL

〈Φs3〉= 18 gNL〈ΦG,s2〉ΦG,l
2

and locally varying skewness!

〈Φ4〉- 〈Φ2〉≈24gNL〈Φ2〉323

fNLeff (x)〈σG,short2〉≡



“τNL”

we get

defining
~fNL= fNL/(1+ξ2)2 and τNL= fNL2(1+ξ2)

another option

with and

BUT 〈Φ4〉- 〈Φ2〉≈48 τNL〈Φ2〉323
different!

〈Φ3〉≈6 fNL〈Φ2〉2

just like fNL model

Φ(x)=φG(x)+σG(x) + fNL (σG2(x)-<σG2>)~

ξ2 = Pφφ(k)/Pσσ(k) Pφσ(k)=0

(Lyth and Wands 2002; Ichikawa, Suyama, Takahishi, Yamaguchi (2008); Tseliakhovich, Hirata, Slosar 2010)

*the conventional def of τNL is τNL=(6/5 fNL)2 (1+ξ2) --  but throughout this talk I drop the 6/5 for simplicity

*



“τNL”

we get

defining
~fNL= fNL/(1+ξ2)2 and τNL= fNL2(1+ξ2)

another option

with and

BUT 〈Φ4〉- 〈Φ2〉≈48 τNL〈Φ2〉323
different!

〈Φ3〉≈6 fNL〈Φ2〉2

just like fNL model
contrast w/〈Φ4〉- 〈Φ2〉≈48 fNL2〈Φ2〉33

2

looks like fNL local model but, 4-point is independent and 
larger than you’d expect from measuring the 3-point

Φ(x)=φG(x)+σG(x) + fNL (σG2(x)-<σG2>)~

ξ2 = Pφφ(k)/Pσσ(k) Pφσ(k)=0

(Lyth and Wands 2002; Ichikawa, Suyama, Takahishi, Yamaguchi (2008); Tseliakhovich, Hirata, Slosar 2010)



“τNL”

we get

defining
~fNL= fNL/(1+ξ2)2 and τNL= fNL2(1+ξ2)

another option

with and

BUT 〈Φ4〉- 〈Φ2〉≈48 τNL〈Φ2〉323〈Φ3〉≈6 fNL〈Φ2〉2

〈Φs2〉= 〈ΦG,s2〉(1 + 4 fNL (1+ξ2)σG,l)

AND variance varies from place to place depending on the value of 
σG,l ONLY as opposed to total potential Φ = φ+σ

Φ(x)=φG(x)+σG(x) + fNL (σG2(x)-<σG2>)~

ξ2 = Pφφ(k)/Pσσ(k) Pφσ(k)=0

(Lyth and Wands 2002; Ichikawa, Suyama, Takahishi, Yamaguchi (2008); Tseliakhovich, Hirata, Slosar 2010)



probability

Φ(x)=φG(x)+ σG(x)+ fNL(σG(x)2-<σG2>) ? “τNL”

Gaussian

(Lyth and Wands 2002; Ichikawa, Suyama, Takahishi, Yamaguchi (2008); Tseliakhovich, Hirata, Slosar 2010)

positive skewness and usual 
kurtosis: τNL = fNL2

positive skewness and larger  
kurtosis: τNL >  fNL2

Φ value

-6000 < τNL  < 33,000
(WMAP, Smidt et al 2010)

current constraints:

~



“fNL” “gNL” “τNL”
Φ(x)=ΦG(x)+fNL ΦG(x)2 Φ(x)=ΦG(x)+gNL ΦG(x)3 Φ(x)=φG(x)+σG(x)

            +fNL (1+ξ2) σG(x)2

τNL= fNL2(1+ξ2)

〈Φ3〉 ≈   〈Φ2〉6fNL
2 〈Φ3〉 =   0 〈Φ3〉 ≈   〈Φ2〉6fNL

2

3
〈Φ4〉≈48 τNL〈Φ2〉c

〈Φ4〉≈48 fNL2〈Φ2〉c
3 3

〈Φ4〉≈24 gNL〈Φ2〉c

ξ2 =Pφφ/Pσσ

〈Φs2 〉= 〈Φs2 〉(1+4fNLΦl) 〈Φs2〉=〈Φs2〉(1+6gNLΦl2 )〈Φs2 〉= 

      〈Φs2 〉(1+4(1+ ξ2)fNLσl) 
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〈Φs3〉= 18 gNL〈Φs2〉Φl
2



φ

σ

inflaton

curvaton

potential ∼ V(φ,σ) 

curvaton is a way to get “local-type” non-Gaussianity
total energy dominated by inflaton: H2 =  8πG/3 V(φ,σ) 

perturbations dominated by curvaton: PΦ(k) ≈ Pσ(k)

How would this happen?

Linde and Mukhanov 1997; Lyth and Wands 2002



φ

σ

inflaton

curvaton

potential ∼ V(φ,σ) 

Linde and Mukhanov 1997; Lyth and Wands 2002

curvaton is a way to get “local-type” non-Gaussianity
total energy dominated by inflaton: H2 =  8πG/3 V(φ,σ) 

perturbations dominated by curvaton: PΦ(k) ≈ Pσ(k)

for V(σ) = m2σ2, Φ ∼ δσ+ δσ2 “fNL”
for V(σ) ∼ σn can get Φ ∼ δσ + δσ3 + . . . “gNL”
if inflaton allowed to contribute, Φ ∼ δφ+ δσ + δσ2 + . . .“τNL”

How would this happen?



Note:

also have, 

single-field consistency relation

fNL ∂ln k3PΦ
∂ln k  (ns-1)≈

 also applies to gNL and τNL

=

gNL
∂ln k6BΦ
∂ln k≈ = nNG

τNL ≈  (ns-1)2

e.g. Chen, Huang, Shiu 2008; Leblond & Pajer 2011 

Suyama & Yamaguchi 2008; Sugiyama, Komatsu, 
Futamase 2011; Smith, ML, Zaldarriaga 2011

τNL  > fNL2
~

(see also Tanaka, Urakawa 2011)



What kinds of 
signatures in large-scale 

structure?



Signatures in LSS I: more/fewer massive 
halos



Signatures in LSS I: more/fewer massive halos

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998; Robinson, Gawiser, Silk 2000

δρ/ρ
δc

non-Gaussianity changes the number density of peaks
Gaussian positive skewness no skewness, positive kurtosis

number of peaks ⇔ number of halos~

dark matter halos form in peaks of the density field



Signatures in LSS I: more/fewer massive halos

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998; Robinson, Gawiser, Silk 2000

δc

number of peaks ≈ area in 
tail of PDF

number of peaks ⇔ number of halos~ probability

PDF for δ(M) ↔ # of halos of mass M
(Press & Schechter 1974)

δρ/ρ



Mass function of dark matter halos 9

Figure 7. The FOF(0.2) mass functions of all the simulation out-
puts listed in Table 2. Remarkably, when a single linking length
is used to identify halos at all times and in all cosmologies, the
mass function appears to be invariant in the f − lnσ−1 plane. A
single formula (eqn. 9), shown with a dotted line, fits all the mass
functions with an accuracy of better than about 20% over the
entire range. The dashed curve show the Press-Schechter mass
function for comparison.

effective power spectrum slope, neff . Cosmic density ranges
over 0.3 ≤ Ω ≤ 1.0. Remarkably, all curves lie very close
to a single locus in the f − ln σ−1 plane. The use of a con-
stant linking length has significantly reduced the amplitude
of the redshift trend seen in the ΛCDM model in the previ-
ous section, and also places the OCDM outputs on the same
locus.

The numerical data in Fig. 7 are well fit by the following
formula:

f(M) = 0.315 exp
[

− | ln σ−1 + 0.61|3.8
]

, (9)

valid over the range −1.2 ≤ ln σ−1 ≤ 1.05.
In Fig. 8 we plot the difference between the measured

mass functions and our fitting formula. The fit is good to
a fractional accuracy better than 20% for −1.2 ≤ lnσ−1 ≤
1. This is a very significant improvement over the Press-
Schechter formula which would exceed the vertical limits of
the plot! The curves for the open models with Ω = 0.3 are
slightly high in this plot but only by ∼ 10%. The spread
between the different curves increases for large lnσ−1. This
may simply reflect the fact that the very steep high mass end
of the mass function is sensitive to numerical effects which
change the masses of clusters in a systematic way.

As shown in the figure, eqn. 9 is very close to the formula
proposed by Sheth & Tormen (1999); there is a small dif-
ference in the high mass tail, for lnσ−1 > 0.9. A non-linear
least-squares fit of eqn. 7 to the simulation data in Fig. 8
shows that the fit can be improved by adjusting the param-
eters A, p and a. If the normalisation constraint, eqn. 6, is
ignored, all three parameters can be allowed to vary freely.
In this case, the best fit is obtained for A = 0.353, p = 0.175

Figure 8. The residual between the fitting formula, eqn. 9, and
the FOF(0.2) mass functions for all the simulation outputs listed
in Table 2. The lines are colour codes according to the value
of neff . Solid lines correspond to simulations with Ω = 1, short
dashed lines to flat, low Ω0 models, and long dashed lines to open
models. The heavy dashed line shows the Sheth-Tormen formula
(equation (7))

and a = 0.73 (and 0.84 of the mass is in halos). If the nor-
malisation constraint is enforced, then only two parameters
can vary; in this case the fit is not as good as that provided
by eqn. 9.

Fig. 9 shows the area of the lnσ−1−neff parameter space
which is occupied by the data in Fig. 8. The high mass end
has good coverage in neff with values up to -2.3. In prac-
tice this means that for currently popular cosmologies, the
high mass tail of the halo mass function is well determined
at all redshifts where galaxies have so far been observed.
The τCDM-gif simulation at z = 4.04 has neff = −2.26
and agrees well with τCDM-hub which determine the high
mass end of the mass function at more recent epochs. We
have checked that the τCDM-gif z = 5 output, which has
neff = −2.35, is also consistent with our fitting function,
although its Poisson errors are slightly too large to satisfy
our 10% criterion for inclusion in Figs. 7–9. For low Ω our
fitting formulae should work to even higher redshift. Since
fluctuations grow more slowly for low Ω, and the value of
σ8 required to match current cluster abundances is higher,
low density cosmologies predict substantially less negative
values for neff at each redshift.

6 CONCLUSIONS

We have derived halo mass functions at z = 0 from sim-
ulations of the τCDM and ΛCDM cosmologies over more
than four orders of magnitude in mass, ∼ 3 × 1011 to
∼ 5 × 1015h−1M". In particular, our two Hubble volume
simulations provide the best available predictions for the
abundance of the most massive clusters. We have checked

c© 2000 RAS, MNRAS 000, 1–14
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Signatures in LSS I: more/fewer massive halos

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998; Robinson, Gawiser, Silk 2000

δc

number of peaks ≈ area in 
tail of PDF

number of peaks ⇔ number of halos~ probability

PDF for δ(M) ↔ # of halos of mass M
(Press & Schechter 1974)

Jenkins et al 2000 

δρ/ρ

Press-Schechter

simulations



Signatures in LSS I: more/fewer massive halos

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998; Robinson, Gawiser, Silk 2000

δc

number of peaks ≈ area in 
tail of PDF

number of peaks ⇔ number of halos~ probability

PDF for δ(M) ↔ # of halos of mass M
(Press & Schechter 1974)

Matarrese, Verde, Jimenez 2000; ML, Miller, Shandera, Verde 2007
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Figure 5. Comparison between the halo mass functions from our simulations and from the models by Matarrese et al. (2000), by
LoVerde et al (2008), and the fit by Dalal et al. (2008) for different values of fNL (different panels) and for z = 0, 0.5, 1 (triangles,
circles, squares, respectively). The quantity which is plotted is the ratio f(z, fNL)/f(z, fNL = 0, ). The dotted lines indicate the models
of Matarrese et al. 2000 (green) and LoVerde et al 2008 (magenta), as they appear in equations (B.6) and (4.19) of LoVerde et al (2008),
respectively. The corresponding solid lines indicate the same models with a reduced threshold for halo collapse: δc ! 1.5. The blue solid
lines are obtained by convolving the fNL-dependent kernel given in Dalal et al. (2008) with the mass-function fit for the Gaussian case
by Warren et al. (2006).

3.5 Summary of accuracy and range of validity of

the mass function fits

In order to facilitate the use of our fitting formulae for the
halo mass function we summarize here their accuracy and
range of validity.

• For −80 ! fNL ! 80 and 0 ! z ! 0.5 the best de-
scription (with 5 per cent accuracy) of our numerical data
is given by equations (10), (4) and (11);

• For larger values of fNL and z (but with fNL ! 750 and
z ! 1.6) or whenever an accuracy of 10 per cent is enough,
the universal fits of Section 3.2 should be used:

– universal fit for −80 ! fNL ! 250: equations (4), (7)
and Table 4;

– universal fit for −80 ! fNL ! 750: equations (4), (8),
(9) and Table 5.

4 MATTER POWER SPECTRUM

In this section we study how non-Gaussian initial conditions
influence the power spectrum of the mass density field. At
tree level, the power spectrum does not depend on fNL in
Eulerian perturbation theory. However, one-loop corrections
make the power spectrum fNL-dependent. Qualitatively,

no
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Pillepich, Porciani, Hahn 2008

δρ/ρ

has been applied to non-
Gaussian cases by truncating 
an asymptotic expansion or 

Edgeworth series for the PDF



Signatures in LSS I: more/fewer massive halos

δc

number of peaks ≈ area in 
tail of PDF

number of peaks ⇔ number of halos~ probability

↔ # of halos of mass M

(Press & Schechter 1974)
δρ/ρ

see also Lam & Sheth 2009; Maggiore & Riotto 2009;  D’Amico, Musso, 
Norena, Paranjape 2010; Chongchitnan & Silk 2010 

Motivated by some issues with asymptotic & Edgeworth mass functions 
we instead tried truncating log(PDF for δ(M)) 

use Edgeworth here

then, 
log(PDF for δ(M)) e

PDF for δ(M) ↔ # of halos of mass M



Signatures in LSS I: more/fewer massive halos

δc

number of peaks ≈ area in 
tail of PDF

number of peaks ⇔ number of halos~ probability

↔ # of halos of mass M

(Press & Schechter 1974)
δρ/ρ

see also Lam & Sheth 2009; Maggiore & Riotto 2009;  D’Amico, Musso, 
Norena, Paranjape 2010; Chongchitnan & Silk 2010 

Motivated by some issues with asymptotic & Edgeworth mass functions 
we instead tried truncating log(PDF for δ(M)) 

use Edgeworth here

then, 
log(PDF for δ(M)) e

“log-Edgeworth mass function”

PDF for δ(M) ↔ # of halos of mass M



Signatures in LSS I: more/fewer massive halos

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998; Robinson, Gawiser, Silk 2000

δc

number of peaks ≈ area in 
tail of PDF

number of peaks ⇔ number of halos~ probability

PDF for δ(M) ↔ # of halos of mass M
(Press & Schechter 1974)

Matarrese, Verde, Jimenez 2000; ML, Miller, Shandera, Verde 2007

Jenkins et al 2000 
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Figure 5. Comparison between the halo mass functions from our simulations and from the models by Matarrese et al. (2000), by
LoVerde et al (2008), and the fit by Dalal et al. (2008) for different values of fNL (different panels) and for z = 0, 0.5, 1 (triangles,
circles, squares, respectively). The quantity which is plotted is the ratio f(z, fNL)/f(z, fNL = 0, ). The dotted lines indicate the models
of Matarrese et al. 2000 (green) and LoVerde et al 2008 (magenta), as they appear in equations (B.6) and (4.19) of LoVerde et al (2008),
respectively. The corresponding solid lines indicate the same models with a reduced threshold for halo collapse: δc ! 1.5. The blue solid
lines are obtained by convolving the fNL-dependent kernel given in Dalal et al. (2008) with the mass-function fit for the Gaussian case
by Warren et al. (2006).

3.5 Summary of accuracy and range of validity of

the mass function fits

In order to facilitate the use of our fitting formulae for the
halo mass function we summarize here their accuracy and
range of validity.

• For −80 ! fNL ! 80 and 0 ! z ! 0.5 the best de-
scription (with 5 per cent accuracy) of our numerical data
is given by equations (10), (4) and (11);

• For larger values of fNL and z (but with fNL ! 750 and
z ! 1.6) or whenever an accuracy of 10 per cent is enough,
the universal fits of Section 3.2 should be used:

– universal fit for −80 ! fNL ! 250: equations (4), (7)
and Table 4;

– universal fit for −80 ! fNL ! 750: equations (4), (8),
(9) and Table 5.

4 MATTER POWER SPECTRUM

In this section we study how non-Gaussian initial conditions
influence the power spectrum of the mass density field. At
tree level, the power spectrum does not depend on fNL in
Eulerian perturbation theory. However, one-loop corrections
make the power spectrum fNL-dependent. Qualitatively,
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Pillepich, Porciani, Hahn 2008

δρ/ρ

but 
anyway we 
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compare 

with 
simulations!
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Figure 7. The FOF(0.2) mass functions of all the simulation out-
puts listed in Table 2. Remarkably, when a single linking length
is used to identify halos at all times and in all cosmologies, the
mass function appears to be invariant in the f − lnσ−1 plane. A
single formula (eqn. 9), shown with a dotted line, fits all the mass
functions with an accuracy of better than about 20% over the
entire range. The dashed curve show the Press-Schechter mass
function for comparison.

effective power spectrum slope, neff . Cosmic density ranges
over 0.3 ≤ Ω ≤ 1.0. Remarkably, all curves lie very close
to a single locus in the f − ln σ−1 plane. The use of a con-
stant linking length has significantly reduced the amplitude
of the redshift trend seen in the ΛCDM model in the previ-
ous section, and also places the OCDM outputs on the same
locus.

The numerical data in Fig. 7 are well fit by the following
formula:

f(M) = 0.315 exp
[

− | ln σ−1 + 0.61|3.8
]

, (9)

valid over the range −1.2 ≤ ln σ−1 ≤ 1.05.
In Fig. 8 we plot the difference between the measured

mass functions and our fitting formula. The fit is good to
a fractional accuracy better than 20% for −1.2 ≤ lnσ−1 ≤
1. This is a very significant improvement over the Press-
Schechter formula which would exceed the vertical limits of
the plot! The curves for the open models with Ω = 0.3 are
slightly high in this plot but only by ∼ 10%. The spread
between the different curves increases for large lnσ−1. This
may simply reflect the fact that the very steep high mass end
of the mass function is sensitive to numerical effects which
change the masses of clusters in a systematic way.

As shown in the figure, eqn. 9 is very close to the formula
proposed by Sheth & Tormen (1999); there is a small dif-
ference in the high mass tail, for lnσ−1 > 0.9. A non-linear
least-squares fit of eqn. 7 to the simulation data in Fig. 8
shows that the fit can be improved by adjusting the param-
eters A, p and a. If the normalisation constraint, eqn. 6, is
ignored, all three parameters can be allowed to vary freely.
In this case, the best fit is obtained for A = 0.353, p = 0.175

Figure 8. The residual between the fitting formula, eqn. 9, and
the FOF(0.2) mass functions for all the simulation outputs listed
in Table 2. The lines are colour codes according to the value
of neff . Solid lines correspond to simulations with Ω = 1, short
dashed lines to flat, low Ω0 models, and long dashed lines to open
models. The heavy dashed line shows the Sheth-Tormen formula
(equation (7))

and a = 0.73 (and 0.84 of the mass is in halos). If the nor-
malisation constraint is enforced, then only two parameters
can vary; in this case the fit is not as good as that provided
by eqn. 9.

Fig. 9 shows the area of the lnσ−1−neff parameter space
which is occupied by the data in Fig. 8. The high mass end
has good coverage in neff with values up to -2.3. In prac-
tice this means that for currently popular cosmologies, the
high mass tail of the halo mass function is well determined
at all redshifts where galaxies have so far been observed.
The τCDM-gif simulation at z = 4.04 has neff = −2.26
and agrees well with τCDM-hub which determine the high
mass end of the mass function at more recent epochs. We
have checked that the τCDM-gif z = 5 output, which has
neff = −2.35, is also consistent with our fitting function,
although its Poisson errors are slightly too large to satisfy
our 10% criterion for inclusion in Figs. 7–9. For low Ω our
fitting formulae should work to even higher redshift. Since
fluctuations grow more slowly for low Ω, and the value of
σ8 required to match current cluster abundances is higher,
low density cosmologies predict substantially less negative
values for neff at each redshift.

6 CONCLUSIONS

We have derived halo mass functions at z = 0 from sim-
ulations of the τCDM and ΛCDM cosmologies over more
than four orders of magnitude in mass, ∼ 3 × 1011 to
∼ 5 × 1015h−1M". In particular, our two Hubble volume
simulations provide the best available predictions for the
abundance of the most massive clusters. We have checked

c© 2000 RAS, MNRAS 000, 1–14
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Signatures in LSS I: more/fewer massive halos
N-body simulations with fNL, gNL, and τNL 
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Signatures in LSS I: more/fewer massive halos
N-body simulations with fNL, gNL, and τNL 
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N-body simulations with fNL, gNL, and τNL 
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Signatures in LSS I: more/fewer massive halos
N-body simulations with fNL, gNL, and τNL 
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Signatures in LSS I: more/fewer massive halos
N-body simulations with fNL, gNL, and τNL 
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fNL, τNL independent

again, the new, 
log-Edgeworth 
expression looks 

a lot better!

τNL ≠ fNL2 is 
noticeable!

ML & Smith 2010



Signatures in LSS I: more/fewer massive halos

comparison of fNL, gNL, and τNL 
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Signatures in LSS I: more/fewer massive halos

The log-Edgeworth is a good fit for fNL, gNL, 
and τNL , even at high masses and redshifts!

but cosmology with clusters is hard



Signatures in LSS I: more/fewer massive halos

more to explore: halo finders, mass-observable relation
(these issues apply to using clusters for dark energy also)

poss. advantage is insensitivity to “shape” of NG

(see also Wagner, Verde, Boubekeur 2010)

nNG(M) <δM2> ,<δM3>, <δM4>c   

Don’t need to know B(k1,k2,k3), T(k1,k2,k3,k4);  “local”, 
“equilateral” info integrated out

smoothed variance, 
skewness, kurtosis



Signatures in LSS II: scale-
dependent halo bias



Signatures in LSS II: scale-dependent halo bias
a dark matter halo forms when δρ/ρ is larger than the collapse threshold
δρ/ρ

δc

δc-δl

δρ/ρ

which is easier to reach on top of a long 
wavelength density perturbation

so the number of halos fluctuates 
depending on δl 

δn/n =    δl . . . ∂n
∂δ



Signatures in LSS II: scale-dependent halo bias
the number of halos fluctuates depending on δl 

 Matarrese & Verde 2008; Slosar, Hirata, Seljak, Ho, Padmanabhan 2008; Afshordi & Tolley 2008; McDonald 2008
Dalal, Doré, Huterer, Shirokov 2007
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∇2Φl∼ 4πG δl
Poisson’s

BUT with fNL, the small-scale 
power fluctuates also 
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Signatures in LSS II: scale-dependent halo bias
the number of halos fluctuates depending on δl 

 Matarrese & Verde 2008; Slosar, Hirata, Seljak, Ho, Padmanabhan 2008; Afshordi & Tolley 2008; McDonald 2008
Dalal, Doré, Huterer, Shirokov 2007

δc-δl

δρ/ρ

∇2Φl∼ 4πG δl
Poisson’s

this 1/k2  scaling is hard to generate with local 
(post-inflationary) processes powerful test!

BUT with fNL, the small-scale 
power fluctuates also 

depending on Φl
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Signatures in LSS II: scale-dependent halo bias
so on large scales

halo bias b = 1 + ∂n
∂δ

1
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∂Ps

Ps
δc
2= ∂n
∂δ

where, and

(need simulations to accurately predict these derivatives)

 Matarrese & Verde 2008; Slosar, Hirata, Seljak, Ho, Padmanabhan 2008; Afshordi & Tolley 2008; McDonald 2008
Dalal, Doré, Huterer, Shirokov 2007
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Signatures in LSS II: scale-dependent halo bias
so on large scales

Dalal, Doré, Huterer, Shirokov 2007
 Pillepich, Porciani, Hahn 2008; Desjacques, Seljak, Iliev 2008; Grossi et al 2009 
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Signatures in LSS II: scale-dependent halo bias
so on large scales
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FIG. 3: This figure shows 6 datasets that are most relevant for our constraints on the value of fNL. In the left column show
the NVSSxCMB Integrate Sach Wolfe Cross correlation, the QSO1 power spectrum, the spectroscopic LRG power spectrum,
while the right column shows the last three slices of the photometric LRG sample. The lines show the best fit fNL = 0 model
(black, solid) and two non-Gaussian models: fNL = 100 (blue, dotted), fNL = −100 (red, dashed). The ISW panel additionally
shows the fNL = 800 model as green, dot-dashed line. While changing fNL, other cosmological parameters were kept fixed. See
text for further discussion.

Slosar, Hirata, Seljak, Ho, 
Padmanabhan 2008
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Signatures in LSS II: scale-dependent halo bias
for the gNL model, the local skewness fluctuates 
depending on Φl 

so halo numbers 
fluctuate as 

:〈Φs3〉= 18 gNL〈Φs2〉Φl
2

recall, for fNL: skewness ~ 6fNL〈Φs2〉
2( )

δn/n = b δl + 3 gNL        Φl. . . ∂lnn
∂fNL

Smith, Ferraro, ML 2011
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Signatures in LSS II: scale-dependent halo bias
for the gNL model, the local skewness fluctuates 
depending on Φl 

so halo numbers 
fluctuate as 

:〈Φs3〉= 18 gNL〈Φs2〉Φl
2
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what do we see in simulations?

(see also Desjacques and Seljak 2010; Desjacques, Jeong, Schmidt 2011)
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bias coefficient for gNL in terms of mass

contrast w/fNL where coefficient in terms of bias

Signatures in LSS II: scale-dependent halo bias

bgNL(k)= b +              ∂lnn(M)
∂fNL

3gNL

k2

bfNL(k)= b +                 
2 δc fNL (b-1)

k2



bias coefficient for gNL in terms of mass

contrast w/fNL where coefficient in terms of bias

Signatures in LSS II: scale-dependent halo bias

bgNL(k)= b +              ∂lnn(M)
∂fNL

3gNL

k2

bfNL(k)= b +                 
2 δc fNL (b-1)

k2

we have a fit for gNL in terms of bias:

bgNL(k) ∼ b +gNL                   
non-linear function(b)

k2

form will depend on selection of population in M, z



Signatures in LSS II: scale-dependent halo bias
Summary:

Φ(x)=ΦG(x)+ fNL (ΦG(x)2-<ΦG2>) + gNL(ΦG(x)3-ΦG<ΦG2>)
local non-Gaussianity

bfNL,gNL (k) ∼ b +                  fNL,gNL x constant
k2

scale dependent halo bias



Signatures in LSS II: scale-dependent halo bias

e.g. Creminell, D’Amico, Musso, Noreña 2011
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k2

scale dependent halo bias

impossible to generate 
with single field inflation!
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e.g. Creminell, D’Amico, Musso, Noreña 2011

Summary:

Φ(x)=ΦG(x)+ fNL (ΦG(x)2-<ΦG2>) + gNL(ΦG(x)3-ΦG<ΦG2>)
local non-Gaussianity

bfNL,gNL (k) ∼ b +                  fNL,gNL x constant
k2

scale dependent halo bias

impossible to generate 
with single field inflation!

observational systematics hard! (ask Shirley)



Signatures in LSS II: scale-dependent halo bias

precise values of fNL, gNL will require care -- but 
seeing 1/k2  is the most exciting part

e.g. Creminell, D’Amico, Musso, Noreña 2011

Summary:

Φ(x)=ΦG(x)+ fNL (ΦG(x)2-<ΦG2>) + gNL(ΦG(x)3-ΦG<ΦG2>)
local non-Gaussianity

bfNL,gNL (k) ∼ b +                  fNL,gNL x constant
k2

scale dependent halo bias

impossible to generate 
with single field inflation!

observational systematics hard! (ask Shirley)



Signatures in LSS III: stochastic halo bias



Signatures in LSS III: stochastic halo bias

δn/n = b δl + 2fNL(b-1)/δc Φl. . . 

fNL model: Φ(x) = ΦG(x) + fNL (ΦG2(x)-<ΦG2>) 

τNL model,  Φ(x) = φG(x) + σG(x) + fNL (1+ ξ2)2(σG2(x)-<σG2>)

δn/n = b δl + 2fNL (1+ ξ2) (b-1)σl. . . 

Tseliakhovich, Hirata, Slosar 2010

BUT δ = ∇2(φ+σ)/4πGρ

and δ = ∇2Φ/4πGρ 〈Φs2 〉= 〈ΦG,s2 〉(1 + 4 fNL ΦG,l)  *

*

 〈Φs2 〉= 〈Φs2 〉(1 + 4 fNL (1+ ξ2) σG,l)  *

ξ2 = Pφφ(k)/Pσσ(k)



Signatures in LSS III: stochastic halo bias
fNL model: Φ(x) = ΦG(x) + fNL (ΦG2(x)-<ΦG2>) 

σ fluctuates 
independently of φ 
and therefore δ

and δ = ∇2Φ/4πGρ 〈Φs2 〉= 〈ΦG,s2 〉(1 + 4 fNL ΦG,l)  *

*
*

τNL model,  Φ(x) = φG(x) + σG(x) + fNL (1+ ξ2)2(σG2(x)-<σG2>)
BUT δ = ∇2(φ+σ)/4πGρ

*

 〈Φs2 〉= 〈Φs2 〉(1 + 4 fNL (1+ ξ2) σG,l)  *

ξ2 = Pφφ(k)/Pσσ(k)

halos stochastic w.r.t 
dark matter

δn/n = b δl + 2fNL(b-1)/δc Φl. . . 

δn/n = b δl + 2fNL (1+ ξ2) (b-1)σl. . . 

Tseliakhovich, Hirata, Slosar 2010



Signatures in LSS III: stochastic halo bias

δn/n = b δl + 2fNL(1+ξ2)(b-1)/δc σl. . . 

halos are now stochastic w.r.t. dark matter δ 

because σ fluctuates independently of δ

halos

dark matter

halos

dark matter

just σgrav. potential

tot. grav. potential = φ+σ

non-stochastic stochastic

Tseliakhovich, Hirata, Slosar 2010
Smith & ML 2011



Signatures in LSS III: stochastic halo bias

Pnδ (k)∼ (b + 2fNL(b-1)/δck2 ) Pδδ 

what does it look like?
stochasticity

τNL = (1+ ξ2) fNL2

Pnn (k)∼ (b + 2fNL(b-1)/δck2)2Pδδ + (2fNL (b-1)/δck2)2 ξ2Pσσ

ξ2 = Pφφ(k)/Pσσ(k)

Smith & ML 2011

∝ (τNL-fNL2)



Signatures in LSS III: stochastic halo bias

Pnδ (k)∼ (b + 2fNL(b-1)/δck2 ) Pδδ 

what does it look like?

N.B. the bias factor in Pnδ is unchanged from fNL-only model

stochasticity

τNL = (1+ ξ2) fNL2

models with ξ ≠ 0 
indeed stochastic
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Pnn (k)∼ (b + 2fNL(b-1)/δck2)2Pδδ + (2fNL (b-1)/δck2)2 ξ2Pσσ

ξ2 = Pφφ(k)/Pσσ(k)

Smith & ML 2011
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Signatures in LSS III: stochastic halo bias
does stochasticity agree with predictions?
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tends to look 
better at low 

masses, low fNL

Pnn (k)∼ (b + 2fNL(b-1)/δck2)2Pδδ + (2fNL (b-1)/δck2)2 ξ2Pσσ

Smith & ML 2011



Signatures in LSS III: stochastic halo bias
does stochasticity agree with predictions?
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not great even in the Gaussian case . . .

(curves are the halo 
model predictions)

see also Hamaus, Seljak, Desjacques, Smith, Baldauf 2010
Smith & ML 2011



time + gravity
inflationary 

perturbations

galaxy surveys + clever theory + 
N-body simulations

 Summary



 Summary
Non-Gaussian initial conditions can significantly change 
the abundance of dark matter halos

We’ve found an analytic description for the halo mass 
function that compares well to N-body for fNL, gNL and 
τNL -- perhaps it works for more general forms of NG?

Large-scale halo bias and stochasticity can be 
dramatically altered by non-Gaussianity. 

Analytic descriptions of bias agree well with sims (but 
still need to determine Gaussian parameters from sims)

If two-fields generate perturbations (and only one is 
non-Gaussian) halo bias becomes stochastic, but the 
analytic description typically overpredicts the amplitude 


