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Outline

® Who cares about primordial non-Gaussianity?

(i) What is Gaussian?
(ii) Three simple models of non-Gaussianity: fa., gne, T

@ What Kinds of signatures are in large-scale

structure and how do we model them?

(i) Halo mass function
(ii) Halo clustering
(iii) Halo stochasticity

® Conclusions




Who cares?




* We see structure around us and we
should quantify how it looks

4

inflationary
perturbations

* We have a compelling framework for
how structure arose (inflation) but limited
handles on microphysical models
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Statistics of initial
perturbations?




Statistics of initial perturbations

a

realization of a random field, ®

one-point PDF:  probability

® value

two-point function:

(D(x)P(y)) < Po(k)

k2Po(k) power per mode
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Statistics of initial perturbations

a realization of a random field, ® one-point PDF:  probability

® value

two-point function:
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Statistics of perturbations: a non-Gaussian example

same variance, skewness
28 iz

probability
|

Vg ® value

same vdariance,

10 < fnL < 74

D(x)=Ds(x) + Fne (Pei(X)-<Ds?>) WMAP, Komatsu et al 2010

(P=primordial gravitational potential)
2
skewness (D(x)3) ~ Falde(x)?)

Salopek and Bond 1990; Gangui, Lucchin, Matarrese, Mollerach 1994; Komatsu and Spergel 2001




Statistics of perturbations

we can get more insight by splitting ® info short and long wavelength pieces

D= D s + Pg
e k\

which are uncorrelated *

Locally, we see small-scale fluctuations

Pre,s = Post Fne (Pes? - (Dos?) )+ 2 fne Pos Do,
with variance that varies from place to place depending on the value of ®Pg|

(DrnG,s?? = (Dss?) (1 + 4 fa Pgy)

“

contrast w/ Gaussian fields where different scales are uncorrelated!

* only strictly true in fourier space, but shouldnt be a bad approximation
Slosar, Hirata, Seljak, Ho, Padmanabhan 2008




Statistics of perturbations

SO, for the fne model, P(x)=bs(x)+ fne (Po(X)>-<Ps?>)
we get a skewness (3) =g (De?)’

and small scale power that depends on long wavelength fluctuations ®,
via (Ps2) = (Dss?) (1 + 4 fu D))

probability

skewness same variance, skewness

The fno model just one example, NOT general




ONE reason this is interesting:

single-field inflation predicts
iFNL
(D(k)D(K)D(k“--50)) = (ns-1)(2m)3 d(k+k") Pa(k) Pa(k")

where ns = dlnPo(k)/dInk + 4 =

the so called "consistency relation”

so fn. 2 few rules it out

o~

Acquaviva, Bartolo, Matarrese, Riotto 2003; Maldacena 2003; Creminelli & Zaldarriaga 2004

(see also Tanaka, Urakawa 2011)




Two more non-Gaussian
models




Theres an extensive literature on "fy.” non-Gaussianity
D(x)=Ds(x)+ f (Pe(x)2-<Ds?>)

What about other models?

We'll consider two simple extensions where the non-
Gaussian 4-point function is important:

(D(X)z ¢G(X)+ gNL (¢G(X)3—3¢G(X)<¢GZ>)? “gNL”

W '/

DO(X)=@s(x)+ Tc(X)+ fn(O6(x)2-<06%) 2 “TaL

(Okamoto and Hu 2002; Enqvist and Nurmi 2005)

(Lyth and Wands 2002; Ichikawa, Suyama, Takahishi, Yamaguchi (2008); Tseliakhovich, Hirata, Slosar 2010)
g

(see also Desjacques and Seljak 2010; Shandera, Dalal, Huterer 2010)




what about
CD(X): ¢G(X)+ gNL (¢G(X)3-3¢G(X)<¢GZ>)? “gNL”

gne > O: Kurtosis kurtosis

—

current constraints:

-12 < gn /10° < 16

(WMAP, Fergusson et al 2010)

Kurtosis:

(D)) 3(DX)2 ~ GuiPe(x))

® value

(Okamoto and Hu 2002; Enqvist and Nurmi 2005)




W 4

OnL ®O(x)=0s(x) + gn (P6(x)-3<Ps?> Dg(x))

this gives
9 (3 =0 no skewness!
(P4 - 3<q)2>2 ~24gNL (q>2>3 Kurtosis « gnNL

spli’r’ring D= Ogs + Dg) gives AN = oS

(D2) = <CDG,52> (1+ 6 gNL ®g 2 ) locally varying power

<¢s3> =18 gNL <¢Gsz> @ and locally varying skewness!
5 (O6short??

/M\M/




another option

D(x)=Pa(X)+06(X) + Fn (O6A(X)-<062>)

W|1'h EZ - P(p(p(k)/pdo'(k) Gnd p(pO‘(k)=o
defining
L= ?NL/(I"'EZ)Z and Tnes Fnc(14€2) %
we get ;
(D3 x6 fu (D2 BUT (0% - b2 ~48 Ty, (D2

just like fn. model different!

*the conventional def of T is Tne=(6/5 fau)? (14E2) -- but throughout this talk I drop the 6/5 for simplicity

(Lyth and Wands 2002; Ichikawa, Suyama, Takahishi, Yamaguchi (2008); Tseliakhovich, Hirata, Slosar 2010)




another option

D(x)=Pa(X)+06(X) + Fn (O6A(X)-<062>)

with &% = Poo(k)/Poo(k) and  Pepo(k)=0
defining
fus An/(1482)2 and T FnX(1+E2)
we get
(D3) =6 iy, (D2 BUT (0% - 302) ~48 Ty (92
different!

just like fn. model ; :
(@4) -3(dP?) =48 (P?)

looks like fni local model but, 4-point is independent and
larger than youd expect from measuring the 3-point

(Lyth and Wands 2002; Ichikawa, Suyama, Takahishi, Yamaguchi (2008); Tseliakhovich, Hirata, Slosar 2010)




another option

D(x)=Pa(X)+06(X) + Fn (O6A(X)-<062>)

W|1'h EZ - P(p(p(k)/pdo'(k) Gnd p(pO‘(k)=O
defining
L= ?NL/(I"'EZ)Z and Tnes Fnc(14€2)

we get )
(D3) =6 fy. (D2 BUT (%) - X2 =48 Ty, (92

AND variance varies from place to place depending on the value of
Ost ONLY as opposed to total potential ® = @p+0

(Ds2) = (Dss® (1 + 4 fau (14€3)0G6,)

qA
,\ﬂ\/\/

(Lyth and Wands 2002; Ichikawa, Suyama, Takahishi, Yamaguchi (2008); Tseliakhovich, Hirata, Slosar 2010)




\\}

d(x)=s(x)+ Tc(X)+ Fn(O6(X)2-<06) 2 ‘T

skewness and skewness and
kurtosis: TnL = a2 kurtosis: TnL > L2

current constraints:
-6000 < Tne < 33,000

(WMAP, Smidt et al 2010)

® value

(Lyth and Wands 2002; Ichikawa, Suyama, Takahishi, Yamaguchi (2008); Tseliakhovich, Hirata, Slosar 2010)




short-long scale

definition

skewness

2
(72}
©)

=
s
35

V4

\\FN L '/

D(x)=Ds(x)+Fne Po(x)?

D(x)=Ps(x)+gne Pe(x)?

®(x)=ps(x)+06(x)
+fane (14€2) o6(x)?
€2 =Pyo/Poo
Tne= FncA(14E2)

(P3) = 6FN|_<¢2>2

G =0

(P3) = 6FN|_<¢2>2

(@%), =48 fy? (02

3
(D4) =24 g (D?)

3
(<D4>C 248 Ty (D?)

(D2) = (D2) (1+4fu D)

coupling

(D2) = (D2) (1+6gnDi?)

<(Ds3> =18 gNL <¢52>2 O,

<¢52> =
(D2 ) (1+4(1+ E)fnL0V)




How would this happen?
curvaton is a way to get “local-type” non-Gaussianity

total energy dominated by inflaton: H? = 8nG/3 V(®,0)
perturbations dominated by curvaton: Po(k) = Py(k)

potential ~ V(p,0)
A

curvaton

%

inflaton

Linde and Mukhanov 1997; Lyth and Wands 2002




How would this happen?
curvaton is a way to get “local-type” non-Gaussianity

total energy dominated by inflaton: H2 = 8nG/3 V(®,0)
perturbations dominated by curvaton: Po(k) = Py(k)

potential ~ V(p,0)
A

curvaton

for V(o) = m202, ® ~ 50+ 802 TN ©
for V(o) ~ 0" can get ® ~ d0 + 00> + . . . inflaton

W '/

if inflaton allowed to contribute, ® ~ 0+ 00 + 002 + ... TNL

Linde and Mukhanov 1997; Lyth and Wands 2002




Note:

single-field consistency relation

dln k3Po - (ns-1)

VS o o

also applies to gn. and T

also have,

oln k°Bo
oln k

TNL = (l"ls"].)2

= NNG

gNL =

e.g. Chen, Huang, Shiu 2008; Leblond & Pajer 2011
(see also Tanaka, Urakawa 2011)

T™ne > Fa®

Suyama & Yamaguchi 2008; Sugiyama, Komatsu,
Futamase 2011; Smith, ML, Zaldarriaga 2011




What Kinds of

signatures in large-scale
structure?




Signatures in LSS I: more/fewer massive
halos




Signatures in LSS I: more/fewer massive halos

dark matter halos form in peaks of the density field
6p/pll

non-Gaussianity changes the number density of

e kurtosis

B 3

number of peaks & number of halos

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998; Robinson, Gawiser, Silk




Signatures in LSS I: more/fewer massive halos

number of peaks & number of halos probability

number of peaks =

o Bl

PDF for &(M) < # of halos of mass M
(Press & Schechter 1974)

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998; Robinson, Gawiser, Silk 2000




Signatures in LSS I: more/fewer massive halos

number of peaks & number of halos probability

number of peaks =

o Bl

PDF for &(M) < # of halos of mass M
(Press & Schechter 1974)
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Signatures in LSS I: more/fewer massive halos

number of peaks & number of halos probability

number of peaks =

o Bl

PDF for &(M) < # of halos of mass M
(Press & Schechter 1974)

has been applied to non-
Gaussian cases by truncating

an asymptotic expansion or
Edgeworth series for the PDF

non-Gaussian correction
in fnu model

Pillepich, Porciani, Hahn 2008

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998; Robinson, Gawiser, Silk 2000
Matarrese, Verde, Jimenez 2000; ML, Miller, Shandera, Verde 2007




Signatures in LSS I: more/fewer massive halos

number of peaks & number of halos probability

number of peaks =

o Bl

PDF for &(M) < # of halos of mass M
(Press & Schechter 1974)

op/p

Motivated by some issues with asymptotic & Edgeworth mass functions
we instead tried truncating log(PDF for 0(M))
then,

log(PDF for &(M))
e’ & < # of halos of mass M

use Edgeworth here

see also Lam & Sheth 2009; Maggiore & Riotto 2009; D’'Amico, Musso,
Norena, Paranjape 2010; Chongchitnan & Silk 2010




Signatures in LSS I: more/fewer massive halos

number of peaks & number of halos probability

number of peaks =

o Bl

PDF for &(M) < # of halos of mass M
(Press & Schechter 1974)

op/p

Motivated by some issues with asymptotic & Edgeworth mass functions
we instead tried truncating log(PDF for 0(M))
then,

log(PDF for &(M))
e’ & < # of halos of mass M

"log-Edgeworth mass function”

use Edgeworth here

see also Lam & Sheth 2009; Maggiore & Riotto 2009; D’'Amico, Musso,
Norena, Paranjape 2010; Chongchitnan & Silk 2010




Signatures in LSS I: more/fewer massive halos

number of peaks & number of halos probability

number of peaks =

o Bl

PDF for &(M) < # of halos of mass M
(Press & Schechter 1974)
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Signatures in LSS I: more/fewer massive halos

N-body simulations with fn., gne, and T

D(x)= Po(x)+ fnr (Do(x)2-<Ps?>)

« sims, f,,=+500, 'rNL=(%fNL)2
- - Edgeworth, f,,=+500, 7'M=(%fNL)2
— log Edge., f,,=+500, ‘rNL=(%fNL)2
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Signatures in LSS I: more/fewer
N-body simulations with fni, gne, and T

D(x)= Po(x)+ fnr (Do(x)2-<Ps?>)

« sims, f,,=+500, 'rNL=(%fNL)2
- - Edgeworth, f,,=+500, 7'M=(%fNL)2
— log Edge., f,,=+500, ‘rNL=(%fNL)2
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worry at high

masses?

ML & Smith 2010




Signatures in LSS I: more/fewer massive halos
N-body simulations with fni, gne, and T

Kurtosis can
q)(X): ¢G(X)+ gNL (¢G(X)3—3¢G(X)<¢GZ>)? y
have important
« sims, g,=+5x10°8

-. Edgeworth, g,,=+5 x108 eF'FeCfS on fhe
— log Fidge., gy =5x107 mass function!
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ML & Smith 2010
(see also Desjacques and Seljak 2010)




Signatures in LSS I: more/fewer massive halos
N-body simulations with fni, gne, and T

Kurtosis can
have important

« sims, g,=+5x10°8

-. Edgeworth, g,,=+5 x108 eF'FeCfS on fhe

— log Fidge., gy =5x107 mass function!

B(x)= De(x)+ gn (Pe(x)3-3Pe(x)<Ps?>)?

o

the new, log-
Edgeworth
expression looks
a lot better!
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(see also Desjacques and Seljak 2010)




Signatures in LSS I: more/fewer massive halos
N-body simulations with fni, gne, and T

fne, T independent

« sims, f;=+500, T, =R (%fNL)2
-. Edgeworth, f,;=+500, 7, =2 (%fNL)2

— log Edge., f;=+500, 7, =R (%fNL)2
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Signatures in LSS I: more/fewer massive halos
N-body simulations with fni, gne, and T

fne, T independent

« sims, f,=+500, 7, =2 (%fNL)2

_. = = 6 2 M
Edgeworth, f,, =+500, 7, =2 (ngL) TN 2 FNLZ is

— log Edge., f,,;=+500, 7, =R (%fmd)2 noticeable!

{

again, the new,
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Signatures in LSS I: more/fewer massive halos

comparison of fni, gy, and T

x sims, gy,= +5x108 }

s sims, f= +500
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Signatures in LSS I: more/fewer massive halos

The log-Edgeworth is a good fit for fn., gne,
and Tn. , even at high masses and redshifts!

but cosmology with clusters is hard




Signatures in LSS I: more/fewer massive halos

poss. advantage is insensitivity to “shape” of NG

<OM2> ,<OM3>, <OM*>e > nne(M)

smoothed variance,
skewness, kurtosis

Dont need to know B(kykzks), T(kikzksks); “local”,
“equilateral” info integrated out

(see also Wagner, Verde, Boubekeur 2010)

more to explore: halo finders, mass-observable relation

(these issues apply to using clusters for dark energy also)




Signatures in LSS II: scale-
dependent halo bias




Signatures in LSS II: scale-dependent halo bias

a dark matter halo forms when dp/p is larger than the collapse threshold
6p/pu

which is easier to reach on fop of a long
A wavelength density perturbation

.

M&\&/
so the number of halos fluctuates

depending on O = %




Signatures in LSS II: scale-dependent halo bias

the number of halos fluctuates depending on O

“ BUT with fni, the small-scale
power fluctuates also

depending on @

op/pl

Poissons

Dalal, Dore, Huterer, Shirokov 2007
Matarrese & Verde 2008; Slosar, Hirata, Seljak, Ho, Padmanabhan 2008; Afshordi & Tolley 2008; McDonald 2008




Signatures in LSS II: scale-dependent halo bias

the number of halos fluctuates depending on O

“ BUT with fni, the small-scale
power fluctuates also

depending on @

op/pl

Poissons

this 1/k? scaling is hard to generate with local
(post-inflationary) processes . powerful test!

Dalal, Dore, Huterer, Shirokov 2007
Matarrese & Verde 2008; Slosar, Hirata, Seljak, Ho, Padmanabhan 2008; Afshordi & Tolley 2008; McDonald 2008




Signatures in LSS II: scale-dependent halo bias
so on large scales pn6 S, (b + g_%&(b_l)) P66

on O.0n
where, halo bias b =1 +L0_n and Ps— = ?C—

n 06 aps

(need simulations to accurately predict these derivatives)

Dalal, Dore, Huterer, Shirokov 2007
Matarrese & Verde 2008; Slosar, Hirata, Seljak, Ho, Padmanabhan 2008; Afshordi & Tolley 2008; McDonald 2008




Signatures in LSS II: scale-dependent halo bias
so on large scales P s ~ (b + g_f%ﬁc(b-l)) Pss

where, halo bias b = 1 +La—rl

n 00

for example, i

fnL = +500
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Dalal, Dore, Huterer, Shirokov 2007
Pillepich, Porciani, Hahn 2008; Desjacques, Seljak, Iliev 2008; Grossi et al 2009




Signatures in LSS II: scale-dependent halo bias
so on large scales P s ~ (b + g_f%ﬁc(b-l)) Pss

0 on
where, halo bias b =1 +La—rl and IDs—n = i—

35 oPs  29%
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(our sims)
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Slosar, Hirata, Seljak, Ho,
Padmanabhan 2008
Dalal, Dore, Huterer, Shirokov 2007

Pillepich, Porciani, Hahn 2008; Desjacques, Seljak, Iliev 2008; Grossi et al 2009




Signatures in LSS II: scale-dependent halo bias

for the g model, the local skewness fluctuates
depending on @ : (&) =18 gu. (2 B,

so halo numbers  §n/n =b O + 3 gNLblnn d,. .
fluctuate as ofn

(recall, for fai: skewness ~ 6fn. <<D52>2)

Smith, Ferraro, ML 2011




Signatures in LSS II: scale-dependent halo bias

for the g model, the local skewness fluctuates
depending on @ : (&) =18 gu. (2 B,

so halo numbers  §n/n =b O + 3 gNLblnn d,. .
fluctuate as ofn

what do we see in simulations?

Smith, Ferraro, ML 2011




Signatures in LSS II: scale-dependent halo bias

for the g model, the local skewness fluctuates
depending on @ : (&) =18 gu. (2 B,

so halo numbers  §n/q - b § + 3 gNLalnn ®d,.
fluctuate as ofnL

what do we see in simulations?

Py
V4
N

w
o
Q
~
P
V4
-
w
c
Q
l
wn
.S
e
o
o
i -

Smith, Ferraro, ML 2011 (see also Desjacques and Seljak 2010; Desjacques, Jeong, Schmidt 2011)




Signatures in LSS II: scale-dependent halo bias

bias coefficient for gn. in terms of mass

3gndlnn(M)
Ko ofn

contrast w/fn. where coefficient in terms of bias

2 6(: FNL (b-l)
k2

beni(k)= b +




Signatures in LSS II: scale-dependent halo bias

bias coefficient for gn. in terms of mass

3gndlnn(M)

contrast w/fn. where coefficient in terms of bias

2 6(: FNL (b-l)
k2

we have a fit for gn in terms of bias:

beni(k)= b +

non-linear function(b)
k2

bgnu(K) ~ b +gnL

form will depend on selection of population in M, z




Signatures in LSS II: scale-dependent halo bias

Summary:
local non-Gaussianity

D(x)=Ds(x)+ far (Pe(x)?-<Ps?>) + gnu(Pe(X)>-DPe<Ps?>)

—— scale dependent halo bias

bt (K) ~ b + fnL,gae X constant

k2




Signatures in LSS II: scale-dependent halo bias

Summary:
local non-Gaussianity

D(x)=Ds(x)+ far (Pe(x)?-<Ps?>) + gnu(Pe(X)>-DPe<Ps?>)

—— scale dependent halo bias

bt (K) ~ b + fnL,gae X constant

k2

1
I

impossible to generate
with single field inflation!

e.g. Creminell, D’Amico, Musso, Norefia 2011




Signatures in LSS II: scale-dependent halo bias

Summary:
local non-Gaussianity

D(x)=Ds(x)+ far (Pe(x)?-<Ps?>) + gnu(Pe(X)>-DPe<Ps?>)

—— scale dependent halo bias

bt (K) ~ b + fnL,gae X constant

k2

1
I

impossible to generate
with single field inflation!

e.g. Creminell, D’Amico, Musso, Norefia 2011

observational systematics hard! (ask Shirley)




Signatures in LSS II: scale-dependent halo bias

Summary:
local non-Gaussianity

D(x)=Ds(x)+ far (Pe(x)?-<Ps?>) + gnu(Pe(X)>-DPe<Ps?>)

—— scale dependent halo bias
) - b + MLgw X constant
k2

benwgne (K

1
I

impossible to generate
with single field inflation!

e.g. Creminell, D’Amico, Musso, Norefia 2011

observational systematics hard! (ask Shirley)

precise values of fn., gne will require care -- but
seeing 1/k? is the most exciting part




Signatures in LSS III: stochastic halo bias




Signatures in LSS III: stochastic halo bias
fae model: ®(x) = Do(x) + fine (Ps?(X)-<DPs?>)

% (D2) = (DPgs?) (1 + 4 fae DPs1) and & = V2 /4GP
on/n = b O + 2fn(b-1)/0c D.. . .

Tne model, D(x) = ps(x) + 06(X) + fne (1+ €2)2(0634(X)-<06%>)
 (P2) = (D2) (1 + 4 fne (1+ €3 061) BUT & = V(p+0)/41Gp

¥ 0n/n=b O + 2f\ (1+ €?) (b-1)|. . .

&% = Poo(k)/Poo(k)

Tseliakhovich, Hirata, Slosar 2010




Signatures in LSS III: stochastic halo bias
fae model: ®(x) = Do(x) + fine (Ps?(X)-<DPs?>)

% (D2) = (DPgs?) (1 + 4 fae DPs1) and & = V2 /4GP
on/n = b O + 2fn(b-1)/0c D.. . .

Tne model, D(x) = ps(x) + 06(X) + fne (1+ €2)2(0634(X)-<06%>)
 (P2) = (D2) (1 + 4 fne (1+ €3 061) BUT & = V(p+0)/41Gp

¥ 0n/n=b O + 2fn (1+ €?) (b-1)Oy. . .

&% = Poo(k)/Poo(k)

O fluctuates
independently of ¢
and therefore 0

halos stochastic w.r.t
dark matter

Tseliakhovich, Hirata, Slosar 2010




Signatures in LSS III: stochastic halo bias

halos are now stochastic w.r.t. dark matter 0
=b o + 2fn(1+&E3)(b-1)/0. O|. . .

because 0 fluctuates independently of ©

non-stochastic stochastic

A
\
grav. pofenfial/\/\/\/\ //W just O

tot. grav. potential = P+C

Tseliakhovich, Hirata, Slosar 2010
Smith & ML 2011




Signatures in LSS III: stochastic halo bias

what does it look like?
Pus (K)~ (b + 2fni(b-1)/3ck? ) Pes NIRRT

« (Tne-fne®)
Pon (K)~ (b + 2fnu(b-1)/0ck?)2Pss + ((2fnL (b-1)/0cké)? E2Poo

&2 = Poop(K)/Poo(k)
TNL = (1+ Ez) e

Smith & ML 2011




Signatures in LSS III: stochastic halo bias

what does it look like?
Pus (K)~ (b + 2fni(b-1)/3ck? ) Pes NIRRT

« (Tne-fne®)
Pon (K)~ (b + 2fnu(b-1)/0ck?)2Pss + ((2fnL (b-1)/0cké)? E2Poo

2
&2 = Poop(K)/Poo(k)

®  fy;,=500, £=0 e fy, =500, £=0

X fyp =500, £=1 X fap =500, £=1 TNL = (1"' EZ) FNL2
o fy.=0 o fy,=0

e fy =—500, £=0 ®  fyr=-500,£=0

< fa=-500, =1 < fap=—500, =1

2

V]
o
Q
~
i\
(Vo]
c
y
Vo]
Vo]
Q
~
c
c
(al

models with € # 0
I indeed stochastic

T x xR}
1L ggjﬁx E% (TnetfaL?)

z=1
(.15 x108) <M <(2.32 x10") ™' M

stochasticity, r

. the bias factor in Pns is unchanged from fni-only model
Smith & ML 2011




Signatures in LSS III: stochastic halo bias

does stochasticity agree with predictions?

Prn (K)~ (b + 2fni(b-1)/0ck?)*Pss + (2fn (b-1)/0ck?)? E%Poo

um, shape looks
good but not
amplitude

tends to look
better at low

S =500, £=1 masses, low L
z=2, M>(1.15 x10"*) h ™' M,

0.02 0.03
k (h Mpc™!)

10° &* Ar,(k) (h® Mpc™®)
u
(=)

C
S
(24
(%2}
3
(o]
O
Q
>
o
e
(o]
P
+
2
-+~
(%2}
o
<
O
O
-+—
w
(72}
(72}
Q
(S}
X
Q

Smith & ML 2011




Signatures in LSS III: stochastic halo bias

does stochasticity agree with predictions?

not great even in the Gaussian case . . .

(curves are the halo
model predictions)

e - z=2, M>(1.15x10") h ' M
e z2=0.5, M >(4.66 x10") h ' M

~
+
Q
e
w
S]
<
o
L
wv
c
S
w
w
>
oS
)

Smith & ML 2011
see also Hamaus, Seljak, Desjacques, Smith, Baldauf 2010




Summary

galaxy surveys + clever theory +
N-body simulations

T

inflationary
perturbations




Summary

Non-Gaussian initial conditions can significantly change
the abundance of dark matter halos

We've found an analytic description for the halo mass
function that compares well to N-body for fn., gne and
Tne —- perhaps it works for more general forms of NG?

Large-scale halo bias and stochasticity can be
dramatically altered by non-Gaussianity.

Analytic descriptions of bias agree well with sims (but
still need to determine Gaussian parameters from sims)

If two-fields generate perturbations (and only one is
non-Gaussian) halo bias becomes stochastic, but the
analytic description typically overpredicts the amplitude




