Local primordial non-Gaussianity in large-scale structure: Halo mass function and clustering with f_{NL} , g_{NL} and τ_{NL}

Marilena LoVerde (Institute for Advanced Study) with Kendrick Smith (Princeton University)

arXiv: 1010.0055, arXiv:1102.1439

+ Simone Ferraro (Princeton) arXiv: 1106.0503

Outline

- Who cares about primordial non-Gaussianity?
 - (i) What is Gaussian?
 - (ii) Three simple models of non-Gaussianity: fnl, gnl, Tnl
- What kinds of signatures are in large-scale structure and how do we model them?
 - (i) Halo mass function
 - (ii) Halo clustering
 - (iii) Halo stochasticity
- Conclusions

Who cares?

* We see structure around us and we should quantify how it looks

time + gravity

* We have a compelling framework for how structure arose (inflation) but limited handles on microphysical models

* We see structure around us and we should quantify how it looks

* We have a compelling framework for how structure arose (inflation) but limited handles on microphysical models

Different models make different predictions for statistics of perturbations

Statistics of initial perturbations?

Statistics of initial perturbations

a realization of a random field, Φ

Statistics of initial perturbations

a realization of a random field, Φ

Statistics of perturbations: a non-Gaussian example

Salopek and Bond 1990; Gangui, Lucchin, Matarrese, Mollerach 1994; Komatsu and Spergel 2001

Statistics of perturbations

we can get more insight by splitting Φ into short and long wavelength pieces

$$\Phi_{G} = \Phi_{G,s} + \Phi_{G,l}$$

$$=$$

which are uncorrelated *

Locally, we see small-scale fluctuations

$$\Phi_{NG,s} = \Phi_{G,s} + f_{NL} (\Phi_{G,s}^2 - \langle \Phi_{G,s}^2 \rangle) + 2 f_{NL} \Phi_{G,s} \Phi_{G,l}$$

with variance that varies from place to place depending on the value of $\Phi_{G,l}$

$$\langle \Phi_{NG,s}^2 \rangle = \langle \Phi_{G,s}^2 \rangle (1 + 4 f_{NL} \Phi_{G,l})$$

contrast w/ Gaussian fields where different scales are uncorrelated!

* only strictly true in fourier space, but shouldn't be a bad approximation Slosar, Hirata, Seljak, Ho, Padmanabhan 2008

Statistics of perturbations

SO, for the f_{NL} model, $\Phi(x) = \Phi_G(x) + f_{NL} (\Phi_G(x)^2 - \langle \Phi_G^2 \rangle)$ we get a skewness $\langle \Phi^3 \rangle \approx 6 f_{NL} \langle \Phi_G^2 \rangle^2$

and small scale power that depends on long wavelength fluctuations Φ_l via $\langle \Phi_s^2 \rangle = \langle \Phi_{G,s}^2 \rangle$ (1 + 4 f_{NL} $\Phi_{G,l}$)

positive skewness

same variance, negative skewness

The f_{NL} model just one example, NOT general

ONE reason this is interesting:

single-field inflation predicts

 $\langle \Phi(\mathbf{k})\Phi(\mathbf{k}')\Phi(\mathbf{k}''-->0)\rangle \approx (n_s-1)(2\pi)^3 \delta(\mathbf{k}+\mathbf{k}') P_{\Phi}(\mathbf{k}) P_{\Phi}(\mathbf{k}'')$

where $n_s = dlnP_{\Phi}(k)/dlnk + 4 \approx 1$

the so called "consistency relation"

so fNL & few rules it out

Two more non-Gaussian models

There's an extensive literature on "f_{NL}" non-Gaussianity

$$\Phi(x) = \Phi_G(x) + f_{NL} (\Phi_G(x)^2 - \langle \Phi_G^2 \rangle)$$

What about other models?

We'll consider two simple extensions where the non-Gaussian 4-point function is important:

$$\Phi(x) = \Phi_G(x) + g_{NL} (\Phi_G(x)^3 - 3\Phi_G(x) < \Phi_G^2 >)? "g_{NL}"$$

$$\Phi(x) = \varphi_G(x) + \sigma_G(x) + \widetilde{f}_{NL}(\sigma_G(x)^2 - \langle \sigma_G^2 \rangle)$$
 " τ_{NL} "

(Okamoto and Hu 2002; Enqvist and Nurmi 2005)

(Lyth and Wands 2002; Ichikawa, Suyama, Takahishi, Yamaguchi (2008); Tseliakhovich, Hirata, Slosar 2010) (see also Desjacques and Seljak 2010; Shandera, Dalal, Huterer 2010)

what about

$$\Phi(x) = \Phi_G(x) + g_{NL} (\Phi_G(x)^3 - 3\Phi_G(x) < \Phi_G^2 >)? "g_{NL}"$$

(Okamoto and Hu 2002; Enqvist and Nurmi 2005)

$$\Phi(x) = \Phi_G(x) + g_{NL} (\Phi_G^3(x) - 3 < \Phi_G^2 > \Phi_G(x))$$

this gives

$$\langle \Phi^3 \rangle = 0$$

 $\langle \Phi^3 \rangle = 0$ no skewness!

$$\langle \Phi^4 \rangle - 3 \langle \Phi^2 \rangle^2 \approx 24 g_{NL} \langle \Phi^2 \rangle^3$$
 kurtosis $\propto g_{NL}$

splitting
$$\Phi_{G} = \Phi_{G,s} + \Phi_{G,l}$$
 gives

$$\langle \Phi_s^2 \rangle = \langle \Phi_{G,s}^2 \rangle (1 + 6 g_{NL} \Phi_{G,l}^2)$$
 locally varying power

$$\langle \Phi_s^3 \rangle = 18 \text{ g}_{NL} \langle \Phi_{G,s}^2 \rangle^2 \Phi_{G,l}$$
 and locally varying skewness!
 $\equiv f_{NL}^{\text{eff}}(x) \langle \sigma_{G,\text{short}}^2 \rangle$

another option

$$\Phi(\mathbf{x}) = \varphi_{G}(\mathbf{x}) + \sigma_{G}(\mathbf{x}) + \widehat{f}_{NL} (\sigma_{G}^{2}(\mathbf{x}) - \langle \sigma_{G}^{2} \rangle)$$

with
$$\xi^2 = P_{\varphi\varphi}(k)/P_{\sigma\sigma}(k)$$
 and $P_{\varphi\sigma}(k)=0$

defining

$$f_{NL} = \tilde{f}_{NL}/(1+\xi^2)^2$$
 and $T_{NL} = f_{NL}^2(1+\xi^2)^*$

we get

$$\langle \Phi^3 \rangle \approx 6 f_{NL} \langle \Phi^2 \rangle^2$$

BUT
$$\langle \Phi^4 \rangle - 3 \langle \Phi^2 \rangle^2 \approx 48 \tau_{NL} \langle \Phi^2 \rangle^3$$

just like f_{NL} model

different!

*the conventional def of τ_{NL} is τ_{NL} =(6/5 f_{NL})² (1+ ξ ²) -- but throughout this talk I drop the 6/5 for simplicity (Lyth and Wands 2002; Ichikawa, Suyama, Takahishi, Yamaquchi (2008); Tseliakhovich, Hirata, Slosar 2010)

another option

$$\Phi(\mathbf{x}) = \varphi_{G}(\mathbf{x}) + \sigma_{G}(\mathbf{x}) + \mathbf{\hat{f}}_{NL} (\sigma_{G}^{2}(\mathbf{x}) - \langle \sigma_{G}^{2} \rangle)$$

with
$$\xi^2 = P_{\varphi\varphi}(k)/P_{\sigma\sigma}(k)$$
 and $P_{\varphi\sigma}(k)=0$

defining

$$f_{NL} = \tilde{f}_{NL}/(1+\xi^2)^2$$
 and $T_{NL} = f_{NL}^2(1+\xi^2)$

we get

$$\langle \Phi^3 \rangle \approx 6 f_{NL} \langle \Phi^2 \rangle^2$$

BUT
$$\langle \Phi^4 \rangle - 3 \langle \Phi^2 \rangle^2 \approx 48 \tau_{NL} \langle \Phi^2 \rangle^3$$

just like f_{NL} model

different!

contrast w/
$$\langle \Phi^4 \rangle$$
 - 3 $\langle \Phi^2 \rangle^2 \approx 48 \text{ f}_{NL}^2 \langle \Phi^2 \rangle^3$

looks like f_{NL} local model but, 4-point is <u>independent and</u> <u>larger</u> than you'd expect from measuring the 3-point

another option

$$\Phi(\mathbf{x}) = \varphi_{G}(\mathbf{x}) + \sigma_{G}(\mathbf{x}) + \widehat{f}_{NL} (\sigma_{G}^{2}(\mathbf{x}) - \langle \sigma_{G}^{2} \rangle)$$

with
$$\xi^2 = P_{\varphi\varphi}(k)/P_{\sigma\sigma}(k)$$
 and $P_{\varphi\sigma}(k)=0$

defining

$$f_{NL} = \tilde{f}_{NL}/(1+\xi^2)^2$$
 and $T_{NL} = f_{NL}^2(1+\xi^2)$

we get

$$\langle \Phi^3 \rangle \approx 6 \text{ f}_{NL} \langle \Phi^2 \rangle^2$$
 BUT $\langle \Phi^4 \rangle - 3 \langle \Phi^2 \rangle^2 \approx 48 \text{ T}_{NL} \langle \Phi^2 \rangle^3$

AND variance varies from place to place depending on the value of $\sigma_{G,l}$ ONLY as opposed to total potential $\Phi = \phi + \sigma$

$$\langle \Phi_s^2 \rangle = \langle \Phi_{G,s}^2 \rangle (1 + 4 f_{NL} (1 + \xi^2) \sigma_{G,l})$$

$\Phi(x) = \varphi_G(x) + \sigma_G(x) + \widetilde{f}_{NL}(\sigma_G(x)^2 - \langle \sigma_G^2 \rangle)? \quad \text{``} \tau_{NL}"$

Gaussian

positive skewness and usual

kurtosis: $T_{NL} = f_{NL}^2$

probability

positive skewness and larger kurtosis: T_{NL} > f_{NL}²

current constraints:

 $-6000 < T_{NL} < 33,000$

(WMAP, Smidt et al 2010)

(Lyth and Wands 2002; Ichikawa, Suyama, Takahishi, Yamaguchi (2008); Tseliakhovich, Hirata, Slosar 2010)

Φ value

"gnL"

"TNL"

definition	$\Phi(x) = \Phi_G(x) + f_{NL} \Phi_G(x)^2$	$\Phi(x) = \Phi_G(x) + g_{NL} \Phi_G(x)^3$	$Φ(x)=φ_G(x)+σ_G(x)$ $+f_{NL}(1+ξ^2) σ_G(x)^2$ $ξ^2 = P_{φφ}/P_{σσ}$ $T_{NL} = f_{NL}^2(1+ξ^2)$
skewness	$\langle \Phi^3 \rangle \approx 6 f_{NL} \langle \Phi^2 \rangle^2$	$\langle \Phi^3 \rangle = 0$	$\langle \Phi^3 \rangle \approx 6 f_{NL} \langle \Phi^2 \rangle^2$
kurtosis	$\langle \Phi^4 \rangle_c \approx 48 f_{NL}^2 \langle \Phi^2 \rangle^3$	$\langle \Phi^4 \rangle_c \approx 24 \text{ g}_{NL} \langle \Phi^2 \rangle^3$	$\langle \Phi^4 \rangle_c \approx 48 \tau_{NL} \langle \Phi^2 \rangle^3$
ort-long scale coupling	$\langle \Phi_s^2 \rangle = \langle \Phi_s^2 \rangle (1+4f_{NL}\Phi_l)$	$\langle \Phi_s^2 \rangle = \langle \Phi_s^2 \rangle (1 + 6g_{NL} \Phi_l^2)$ $\langle \Phi_s^3 \rangle = 18 g_{NL} \langle \Phi_s^2 \rangle^2 \Phi_l$	$\langle \Phi_s^2 \rangle = \langle \Phi_s^2 \rangle (1+4(1+\xi^2)f_{NL}\sigma_l)$

shor

How would this happen? curvaton is a way to get "local-type" non-Gaussianity

total energy dominated by <u>inflaton</u>: $H^2 = 8\pi G/3 \ V(\phi,\sigma)$ perturbations dominated by <u>curvaton</u>: $P_{\phi}(k) \approx P_{\sigma}(k)$

How would this happen? curvaton is a way to get "local-type" non-Gaussianity

total energy dominated by inflaton: $H^2 = 8\pi G/3 \ V(\phi,\sigma)$ perturbations dominated by curvaton: $P_{\phi}(k) \approx P_{\sigma}(k)$

Note:

single-field consistency relation

$$f_{NL} \approx \frac{\partial \ln k^3 P_{\Phi}}{\partial \ln k} = (n_s - 1)$$

also applies to g_{NL} and T_{NL}

$$g_{NL} \approx \frac{\partial \ln k^6 B_{\Phi}}{\partial \ln k} = n_{NG}$$

$$T_{NL} \approx (n_s-1)^2$$

also have,

e.g. Chen, Huang, Shiu 2008; Leblond & Pajer 2011 (see also Tanaka, Urakawa 2011)

$$T_{NL} \gtrsim f_{NL}^2$$

Suyama & Yamaguchi 2008; Sugiyama, Komatsu, Futamase 2011; Smith, ML, Zaldarriaga 2011

What kinds of signatures in large-scale structure?

dark matter halos form in peaks of the density field

δρ/ρ

non-Gaussianity changes the number density of peaks

number of peaks ≈ number of halos

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998; Robinson, Gawiser, Silk 2000

number of peaks \rightleftharpoons number of halos probability number of peaks \approx area in tail of PDF

PDF for $\delta(M) \leftrightarrow \#$ of halos of mass M (Press & Schechter 1974)

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998; Robinson, Gawiser, Silk 2000

has been applied to non-Gaussian cases by truncating an asymptotic expansion or Edgeworth series for the PDF

Pillepich, Porciani, Hahn 2008

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998; Robinson, Gawiser, Silk 2000 Matarrese, Verde, Jimenez 2000; ML, Miller, Shandera, Verde 2007

Motivated by some issues with asymptotic & Edgeworth mass functions we instead tried truncating log(PDF for $\delta(M)$) then,

see also Lam & Sheth 2009; Maggiore & Riotto 2009; D'Amico, Musso, Norena, Paranjape 2010; Chongchitnan & Silk 2010

Motivated by some issues with asymptotic & Edgeworth mass functions we instead tried truncating log(PDF for $\delta(M)$) then,

e^{log(PDF for δ(M))} ↔ # of halos of mass M
"log-Edgeworth mass function"

use Edgeworth here

see also Lam & Sheth 2009; Maggiore & Riotto 2009; D'Amico, Musso, Norena, Paranjape 2010; Chongchitnan & Silk 2010

but
anyway we
need to
compare
with
simulations!

Pillepich, Porciani, Hahn 2008

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998; Robinson, Gawiser, Silk 2000 Matarrese, Verde, Jimenez 2000; ML, Miller, Shandera, Verde 2007

N-body simulations with f_{NL} , g_{NL} , and τ_{NL}

f_{NL}

N-body simulations with fNL, gNL, and TNL

f_{NL}

Edgeworth
mass function
looks good, but
worry at high
masses?

N-body simulations with fNL, gNL, and TNL

kurtosis can have important effects on the mass function!

ML & Smith 2010 and Seljak 2010)

(see also Desjacques and Seljak 2010)

N-body simulations with fNL, gNL, and TNL

kurtosis can have important effects on the mass function!

the new, log-Edgeworth expression looks a lot better!

ML & Smith 2010 (see also Desjacques and Seljak 2010)

N-body simulations with fNL, gNL, and TNL

f_{NL}, T_{NL} independent

N-body simulations with fNL, gNL, and TNL

f_{NL}, T_{NL} independent

 $T_{NL} \neq f_{NL}^2$ is noticeable!

again, the new, log-Edgeworth expression looks a lot better!

comparison of fNL, gNL, and TNL

The log-Edgeworth is a good fit for f_{NL} , g_{NL} , and T_{NL} , even at high masses and redshifts!

but cosmology with clusters is <u>hard</u>

poss. advantage is insensitivity to "shape" of NG

$$\langle \delta_{M}^{2} \rangle$$
, $\langle \delta_{M}^{3} \rangle$, $\langle \delta_{M}^{4} \rangle_{c} \longrightarrow n_{NG}(M)$

smoothed variance, skewness, kurtosis

Don't need to know $B(k_1,k_2,k_3)$, $T(k_1,k_2,k_3,k_4)$; "local", "equilateral" info integrated out

(see also Wagner, Verde, Boubekeur 2010)

more to explore: halo finders, mass-observable relation (these issues apply to using clusters for dark energy also)

a dark matter halo forms when $\delta\rho/\rho$ is larger than the collapse threshold

δρ/ρ

 δ_c

which is easier to reach on top of a long wavelength density perturbation

so the number of halos fluctuates depending on δ_l

$$\delta n/n = \frac{\partial n}{\partial \delta} \delta_l \dots$$

the number of halos fluctuates depending on δ_{l}

BUT with f_{NL} , the small-scale power fluctuates also depending on Φ_{l}

$$\delta n = \frac{\partial n}{\partial \delta} \delta_l + 4 f_{NL} \frac{\partial n}{\partial P_s} \Phi_l \dots$$

Poisson's

$$\nabla^2 \Phi_{l^{\sim}}$$
 4πG δ_l

$$\delta n \sim \left(\frac{\partial n}{\partial \delta} + \frac{4f_{NL}}{k^2} \frac{\partial n}{\partial P_s}\right) \delta_l$$

the number of halos fluctuates depending on δ_{\parallel}

BUT with f_{NL}, the small-scale power fluctuates also depending on Φ_l

$$\delta n = \frac{\partial n}{\partial \delta} \delta_l + 4 f_{NL} \frac{\partial n}{\partial P_s} \Phi_l \dots$$

Poisson's

$$\nabla^2 \Phi_{l^{\sim}} 4\pi G \delta_l$$

$$\nabla^2 \Phi_{l^{\sim}} 4\pi G \delta_l$$
 δn $\sim \left(\frac{\partial n}{\partial \delta} + \frac{4f_{NL}}{k^2} \frac{\partial n}{\partial P_s}\right) \delta_l$

this 1/k² scaling is hard to generate with local — powerful test! (post-inflationary) processes

so on large scales
$$P_{n\delta} \sim (b + \frac{2f_{NL}\delta_c}{k^2}(b-1)) P_{\delta\delta}$$

where, halo bias
$$\mathbf{b} = 1 + \frac{1}{n} \frac{\partial n}{\partial \delta}$$
 and $P_s \frac{\partial n}{\partial P_s} = \frac{\delta_c}{2} \frac{\partial n}{\partial \delta}$

(need simulations to accurately predict these derivatives)

so on large scales
$$P_{n\delta} \sim (b + \frac{2f_{NL}\delta_c}{k^2}(b-1)) P_{\delta\delta}$$

where, halo bias
$$\mathbf{b} = 1 + \frac{1}{n} \frac{\partial n}{\partial \delta}$$

and
$$P_s \frac{\partial n}{\partial P_s} = \frac{\delta_c}{2} \frac{\partial n}{\partial \delta}$$

for example,

(our sims)

so on large scales
$$P_{n\delta} \sim (b + \frac{2f_{NL}\delta_c}{k^2}(b-1)) P_{\delta\delta}$$

where, halo bias $\mathbf{b} = 1 + \frac{1}{n} \frac{\partial \mathbf{n}}{\partial \delta}$

and $P_s \frac{\partial n}{\partial P_s} = \frac{\delta_c}{2} \frac{\partial r}{\partial s}$

for example,

(our sims)

example data

Slosar, Hirata, Seljak, Ho, Padmanabhan 2008

Dalal, Doré, Huterer, Shirokov 2007

Pillepich, Porciani, Hahn 2008; Desjacques, Seljak, Iliev 2008; Grossi et al 2009

for the g_{NL} model, the local skewness fluctuates depending on Φ_l : $\langle \Phi_s^3 \rangle$ = 18 g_{NL} $\langle \Phi_s^2 \rangle^2 \Phi_l$

so halo numbers fluctuate as

$$\delta n/n = b \delta_l + 3 g_{NL} \frac{\partial lnn}{\partial f_{NL}} \Phi_l \dots$$

(recall, for f_{NL} : skewness ~ $6f_{NL} \langle \Phi_s^2 \rangle^2$)

for the g_{NL} model, the local skewness fluctuates depending on Φ_l : $\langle \Phi_s^3 \rangle$ = 18 g_{NL} $\langle \Phi_s^2 \rangle^2 \Phi_l$

so halo numbers fluctuate as

$$\delta n/n = b \delta_l + 3 g_{NL} \frac{\partial lnn}{\partial f_{NL}} \Phi_l \dots$$

what do we see in simulations?

for the g_{NL} model, the local skewness fluctuates depending on Φ_l : $\langle \Phi_s^3 \rangle$ = 18 g_{NL} $\langle \Phi_s^2 \rangle^2 \Phi_l$

so halo numbers fluctuate as

$$\delta n/n = b \delta_l + 3 g_{NL} \frac{\partial lnn}{\partial f_{NL}} \Phi_l$$
.

what do we see in simulations?

bias coefficient for g_{NL} in terms of mass

$$b_{gNL}(k) = b + \frac{3g_{NL}\partial l_{nn}(M)}{\delta f_{NL}}$$

contrast w/f_{NL} where coefficient in terms of bias

$$b_{fNL}(k) = b + \frac{2 \delta_c f_{NL} (b-1)}{k^2}$$

bias coefficient for g_{NL} in terms of mass

$$b_{gNL}(k) = b + \frac{3g_{NL}\partial l_{nn}(M)}{\delta f_{NL}}$$

contrast w/f_{NL} where coefficient in terms of bias

$$b_{fNL}(k) = b + \frac{2 \delta_c f_{NL} (b-1)}{k^2}$$

we have a fit for g_{NL} in terms of bias:

$$b_{gNL}(k) \sim b + g_{NL} \frac{\text{non-linear function}(b)}{k^2}$$

form will depend on selection of population in M, z

local non-Gaussianity

$$\Phi(x) = \Phi_G(x) + f_{NL} (\Phi_G(x)^2 - \langle \Phi_G^2 \rangle) + g_{NL}(\Phi_G(x)^3 - \Phi_G \langle \Phi_G^2 \rangle)$$

----- scale dependent halo bias

$$b_{fNL,gNL}(k) \sim b + \frac{f_{NL},g_{NL} \times constant}{k^2}$$

local non-Gaussianity

$$\Phi(x) = \Phi_G(x) + f_{NL} (\Phi_G(x)^2 - \langle \Phi_G^2 \rangle) + g_{NL}(\Phi_G(x)^3 - \Phi_G \langle \Phi_G^2 \rangle)$$

----- scale dependent halo bias

$$b_{fNL,gNL}(k) \sim b + \frac{f_{NL},g_{NL} \times constant}{k^2}$$

impossible to generate with single field inflation!

e.g. Creminell, D'Amico, Musso, Noreña 2011

local non-Gaussianity

$$\Phi(x) = \Phi_G(x) + f_{NL} (\Phi_G(x)^2 - \langle \Phi_G^2 \rangle) + g_{NL}(\Phi_G(x)^3 - \Phi_G \langle \Phi_G^2 \rangle)$$

scale dependent halo bias

$$b_{fNL,gNL}(k) \sim b + \frac{f_{NL},g_{NL} \times constant}{k^2}$$

impossible to generate with single field inflation! e.g. Creminell, D'Amico, Musso, Noreña 2011

observational systematics hard! (ask Shirley)

local non-Gaussianity

$$\Phi(x) = \Phi_G(x) + f_{NL} (\Phi_G(x)^2 - \langle \Phi_G^2 \rangle) + g_{NL}(\Phi_G(x)^3 - \Phi_G \langle \Phi_G^2 \rangle)$$

----- scale dependent halo bias

$$b_{fNL,gNL}(k) \sim b + \frac{f_{NL},g_{NL} \times constant}{k^2}$$

impossible to generate with single field inflation! e.g. Creminell, D'Amico, Musso, Noreña 2011

observational systematics hard! (ask Shirley) precise values of f_{NL} , g_{NL} will require care -- but seeing $1/k^2$ is the most exciting part

$$f_{NL}$$
 model: $\Phi(\mathbf{x}) = \Phi_{G}(\mathbf{x}) + f_{NL} (\Phi_{G}^{2}(\mathbf{x}) - \langle \Phi_{G}^{2} \rangle)$

*
$$\langle \Phi_s^2 \rangle = \langle \Phi_{G,s}^2 \rangle (1 + 4 f_{NL} \Phi_{G,l})$$
 and $\delta = \nabla^2 \Phi / 4\pi G \rho$
$$\delta n / n = b \delta_l + 2 f_{NL} (b-1) / \delta_c \Phi_l . . .$$

T_{NL} model,
$$\Phi(\mathbf{x}) = \varphi_G(\mathbf{x}) + \sigma_G(\mathbf{x}) + f_{NL} (1 + \xi^2)^2 (\sigma_G^2(\mathbf{x}) - \langle \sigma_G^2 \rangle)$$

* $\langle \Phi_s^2 \rangle = \langle \Phi_s^2 \rangle (1 + 4 f_{NL} (1 + \xi^2) \sigma_{G,l})$ BUT $\delta = \nabla^2 (\varphi + \sigma) / 4\pi G \rho$

* $\delta n/n = b \delta_l + 2 f_{NL} (1 + \xi^2) (b-1) \sigma_l$. . $\xi^2 = P_{\omega\omega}(k) / P_{\sigma\sigma}(k)$

$$f_{NL}$$
 model: $\Phi(\mathbf{x}) = \Phi_{G}(\mathbf{x}) + f_{NL} (\Phi_{G}^{2}(\mathbf{x}) - \langle \Phi_{G}^{2} \rangle)$

*
$$\langle \Phi_s^2 \rangle = \langle \Phi_{G,s}^2 \rangle (1 + 4 f_{NL} \Phi_{G,l})$$
 and $\delta = \nabla^2 \Phi / 4\pi G \rho$
$$\delta n / n = b \delta_l + 2 f_{NL} (b-1) / \delta_c \Phi_l . . .$$

$$T_{NL} \text{ model}, \ \Phi(\mathbf{x}) = \varphi_G(\mathbf{x}) + \sigma_G(\mathbf{x}) + f_{NL} (1 + \xi^2)^2 (\sigma_G^2(\mathbf{x}) - (\sigma_G^2))$$

*
$$\langle \Phi_s^2 \rangle = \langle \Phi_s^2 \rangle (1 + 4 f_{NL} (1 + \xi^2) \sigma_{G,l})$$
 BUT $\delta = \nabla^2 (\phi + \sigma) / 4\pi G\rho$

*
$$\delta n/n = b \delta_l + 2f_{NL} (1 + \xi^2) (b-1)\sigma_l ...$$

$$\xi^2 = P_{\phi\phi}(k)/P_{\sigma\sigma}(k)$$

 σ fluctuates independently of ϕ and therefore δ

halos stochastic w.r.t dark matter

halos are now stochastic w.r.t. dark matter δ

$$\delta n/n = b \delta_1 + 2f_{NL}(1+\xi^2)(b-1)/\delta_c \sigma_1...$$

because σ fluctuates independently of δ

Signatures in LSS III: stochastic halo bias what does it look like?

$$\xi^2 = P_{\phi\phi}(k)/P_{\sigma\sigma}(k)$$

$$T_{NL} = (1 + \xi^2) f_{NL}^2$$

Signatures in LSS III: stochastic halo bias what does it look like?

 $P_{n\delta}$ (k)~ (b + 2f_{NL}(b-1)/ δ_c k²) $P_{\delta\delta}$

 $P_{nn} (k) \sim (b + 2f_{NL}(b-1)/\delta_c k^2)^2 P_{\delta\delta} + ((2f_{NL} (b-1)/\delta_c k^2)^2 \xi^2 P_{\sigma\sigma})^{\alpha}$

 $\xi^2 = P_{\varphi\varphi}(k)/P_{\sigma\sigma}(k)$

stochasticity

 $T_{NL} = (1 + \xi^2) f_{NL}^2$

models with $\xi \neq 0$ indeed stochastic

 $(T_{NL} \neq f_{NL}^2)$

N.B. the bias factor in $P_{n\delta}$ is unchanged from f_{NL} -only model Smith & ML 2

Signatures in LSS III: stochastic halo bias does stochasticity agree with predictions?

 $P_{nn}(k)_{\sim} (b + 2f_{NL}(b-1)/\delta_c k^2)^2 P_{\delta\delta} + (2f_{NL}(b-1)/\delta_c k^2)^2 \xi^2 P_{\sigma\sigma}$

um, shape looks good but not amplitude

tends to look better at low masses, low f_{NL}

Signatures in LSS III: stochastic halo bias does stochasticity agree with predictions?

not great even in the Gaussian case . . .

(curves are the halo model predictions)

Summary

galaxy surveys + clever theory + N-body simulations

Summary

- Non-Gaussian initial conditions can significantly change the abundance of dark matter halos
- We've found an analytic description for the halo mass function that compares well to N-body for f_{NL}, g_{NL} and T_{NL} -- perhaps it works for more general forms of NG?
- Large-scale halo bias and stochasticity can be dramatically altered by non-Gaussianity.
- Analytic descriptions of bias agree well with sims (but still need to determine Gaussian parameters from sims)
- If two-fields generate perturbations (and only one is non-Gaussian) halo bias becomes stochastic, but the analytic description typically overpredicts the amplitude