ACCESSING CosMIC DAWN VIA THE
HYDROGEN EPOCH OF REIONIZATION ARRAY




We have yet to observe most
of the observable Universe




Hydrogen Is everywhere, and the
21cm line allows us to trace hydrogen

Emit radio wave with

—
21cm wavelength

Absorb radio wave with

%

21cm wavelength



The spectral nature of the 21cm
ine allows us to fill in this volume




Current generation experiments are
lgelsliglemiglE} = poch of Reionization (EoR)
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The redshifted 21cm line Is
very sensitive to astrophysics
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The redshifted 21cm line Is
very sensitive to astropnysics
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Take-nome messages

* We're getting close to detecting the 21cm signal—close enough
to start improving our understanding of reionization.

* Foregrounds and sensitivity are the main challenges of 21cm
cosmology.

e Two frontiers in field:

e Analysis efforts are advancing, with progress on
foreground models and machine learning.

 Observational efforts are advancing, with HERA poised to

deliver qualitatively new constraints on astrophysics and
cosmology.



The status of high-z
21Ccm measurements



A number of current instruments are placing increasingly
tight limits on the amplitude of spatial fluctuations




To1 ~ afew mK



Observations

Theory

121 l€Ss than
~100 mK

To1 ~ afew mK



Current upper limits rule out the
possibility of an extremely cold
intergalactic medium at
z ~ 31010



Cold hydrogen
gas



(Relatively) Cold hydrogen
hot CMB gas
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(Relatively)
hot CMB Small contrast, small signal



If the intergalactic medium had cooled
adiabatically, the hydrogen gas woulad
be cold enough to produce a large
signal—large enough to be seen by
now, with current sensitivities



If the intergalactic medium had cooled
adiabatically, the hydrogen gas woulad
be cold enough to produce a large
signal—large enough to be seen by
now, with current sensitivities

Some mechanism must have
heated up the gas



At the relevant redshifts, Tgas ~ 110 2 K assuming
adiabatic cooling.

Assuming a neutral fraction between 0.3 and 0.7
at those redshitts, Tgas IS likely at least a few K
above this.

Paciga et al. 2011, MNRAS 413, 1174
Parsons, AL et al. 2014, Apd 788, 106
All, ..., AL et al. 2015, Apd 809, 61
Pober, Ali, ..., AL et al. 2015, Apd 809, 62
Cheng et al., in prep.
Kolopanis et al., in prep.



The challenges of
21cm measurements



Astropnysical
foreground contaminants



Contaminants are bright and
dominate the cosmological signal




The cosmological signal is expected to
vary rapidly with changing frequency
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Foregrounds are expected to be smooth
functions of frequency

Foregrounds \

Frequency

Cosmological M /
signal

Frequency/radial dist



‘Know your enemy”...but our knowledge of the
low-frequency radio sky is particularly poor

408 MHz



The extended Global Sky Model
(eGSM): “What does the sky look like
in all directions and all frequencies?”

Pl: AL

Aaron Parsons, UC Berkeley
Doyeon “Avery” Kim, UC Berkeley
Josh Dillon, UC Berkeley

—ric Switzer, NASA Goddard

Max Tegmark, MIT
aoxuan “Jeff” Zheng, MIT/Intel




Global Sky Model

de Oliveira-Costa et al. 2008, MNRAS 388, 247
Zheng... Kim, AL... et al. 2017, MNRAS 464, 3486
Kim, AL... et al. 2017, in prep.



Take a wide selection of




..Identify common
regions...




...and use the most dominant
elgenvectors as templates...

Frequency v[GHz]



.that are used to fit the spectra
N every pixel of the sky...

0.01 0.1 1 10 100

Frequency |GHz]



...and are Interpolated to
oroduces maps of the sky at
‘any’ frequency

150 MHz 5 GHz




extended Global Sky Model

Kim, AL... et al. 2017, In prep.



Problem 1: a good low-
frequency anchor is lacking




Solution: Incorporate new
low-frequency datasets

LWA 74 MHz, Dowell et al. (2017)



An example 408 MHz
orediction




Problem 2: the GSM does not
output error bars!



Solution: construct models for the errors
in the input data, and Monte Carlo to
get final errors in our predictions



Solution: construct models for the errors
in the input data, and Monte Carlo to
get final errors in our predictions

 \Where available, use provided estimates of errors

and covariances
45 MHz

0 6 12 19 25
Percent Error

LWA 74 MHz, Dowell et al. (2017)



Solution: construct models for the errors
in the input data, and Monte Carlo to
get final errors in our predictions

 \Where available, use provided estimates of errors
and covariances

e \Where errors are not available, model the errors
empirically






Run model again with an input map removed,
making a prediction for the missing map



Prediction Data

Subtract the new predicted map from the
observed data



“Error”

Error model



“Error”

Ansatz for harmonic space:
determined by C, of

Ansatz for errors in whitened error map

image space:
proportional to error map

Error model



An example 408 MHz prediction

0.0537907 4.42209




Errors on the 408 MiHz prediction

0.000293996 1.90445



Problem 3:

Why three principal components? (v1.0)
Why six principal components? (v2.0)



Problem 3:

Why three principal components? (v1.0)
Why six principal components? (v2.0)

Too few components: inadequate fits to data
Too many components: overfitting of data



Computing the Bayesian Evidence
provides a way to determine the optimal
number of principal components to fit
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Computing tF

e Bayesian Evidence
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Computing the Bayesian Evidence
provides a way to determine the optimal
number of principal components to fit
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Computing the Bayesian Evidence
provides a way to determine the optimal
number of principal components to fit
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Optimal number of principal
components




Optimal number of principal
components




Optimal number of principal
components
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Optimal number of principal
components

@
Evidence




Optimal number of principal
components




But why even commit to a model? Use
evidence as a weight for constructing
hybrid models that are noncommittal
to the number of components

Weights

3 4 50 0 7



Effective number of principal
components




L ots more coming soon to a
Github repo near you!

Position-dependent number of components.
Error bars in output maps.

Framework for incorporating monopole
measurements.

Inclusion of new map data.



| ots more coming soon to a
Github repo near you!

. End goal: a publicly hosted,
| self-updating, best-guess
model of the sky




I'he sensitivity
challenge



Current instruments lack sensitivity

Observed Frequency (MHz)
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The Hydrogen Epoch of Reionization
Array (HERA) is designed to measure
the power spectrum of spatial
fluctuations to high significance




lake a relatively simple antenna...




..flip it upside down and give it a large (14 m
diameter) reflector...




...hex-pack them as closely as possible...




...get the Hydrogen Epoch of Reionization Array
HERA
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HERA will make a high significance
measurement within ~5 years

Observed Frequency (MHz)
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The promise of 21cm
cosmology
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R,q: Mmean free path of ionizing photons

Observed Frequency (MHz)
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Neutral Fraction
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Greig & Mesinger (2015) 'Gold
Sample' constraints without HERA

HERA with 25% modeling error on P, (k)

0 10 T B 13

AL & Parsons (2015)



Questions we can now
pbegin to ask

How and when was the |IGM heated?

Were there any exotic mechanisms at play?

What was the nature of the first stars and galaxies”
Were galaxies solely responsible for reionization??

How does fundamental physics play into this? Dark
energy”? Neutrino mass?



A first step towards
cosmological
parameters”



Futuristic 21cm experiments may
function as large scale surveys

AL = 0.0002

A (Z m,,) — 0.007¢V

Mao et al. 2008




FOr Nnow...pbetter
cosmology through better
astropnysics!



Relonization IS a nuisance
for CMB measurements
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Relonization IS a nuisance
for CMB measurements

1100 400 20 8 4 0
e Dark Ages Epoch of —

Relonization

“xtra optical depth parameter: 7 /(azipwdz






Reduces amplitude of

N ———»
Scattering density fluctuations



* Early reionization (higher optical depth)
+ Large primordial fluctuations As

VS

* [ ate reionization (lower optical depth)
+ Small primordial fluctuations As




* Early reionization (higher optical depth)
+ Large primordial fluctuations As

VS

* [ ate reionization (lower optical depth)
+ Small primordial fluctuations As

Understanding reionization (especially the
CMB optical depth) can improve constraints
on other cosmological parameters




HERA provides us with exactly what we need
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21cm information breaks the degeneracy
between the amplitude of fluctuations and
the optical depth
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21cm information breaks the degeneracy
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21cm information breaks the degeneracy
between the amplitude of fluctuations and
the optical depth
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Futuristic cosmology experiments
targeting the neutrino mass also benefit

e Neutrinos free-stream out of over-densities and
dampen structure formation

Without
neutrinos

Agarwal &
Feldman 2011




Futuristic cosmology experiments
targeting the neutrino mass also benefit

e Neutrinos free-stream out of over-densities and
dampen structure formation

With
neutrinos

Agarwal &
Feldman 2011




Both the neutrino mass and the optical depth
can affect the observed amount of small
scale structure, leading to degeneracies




Both the neutrino mass and the optical depth
can affect the observed amount of small
scale structure, leading to degeneracies
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Both the neutrino mass and the optical depth
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Isn’t this awfully
model-dependent”?



Alternate signal extraction algorithms
may also alleviate model-dependence
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Alternate signal extraction algorithms
may also alleviate model-dependence

Convolutional
Neural Network

Observations



Convolutional neural nets process data
through a series of convolutions,
thresholdings, and averages

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected



Convolutional neural nets process data
through a series of convolutions,
thresholdings, and averages

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected
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Initial results suggest that CNNs
can extract the optical depth
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Initial results suggest that CNNs
can extract the optical depth
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EXciting times are ahead!

* We're getting close to detecting the 21cm signal—close enough
to start improving our understanding of reionization.

* Foregrounds and sensitivity are the main challenges of 21cm
cosmology.

e Two frontiers in field:

e Analysis efforts are advancing, with progress on
foreground models and machine learning.

 Observational efforts are advancing, with HERA poised to

deliver qualitatively new constraints on astrophysics and
cosmology.



