University of Sussex

!II'II', _1

I|"'h‘

Ihl I







Parameter estimation and model selection

Choose model:

Set of parameters to be varied
Prior ranges for those parameters
Compute likelihood function
Obtain posterior parameter distribution
Interpret



Parameter estimation and model selection

Choose model:

Set of parameters to be varied
Prior ranges for those parameters
Compute likelihood function
Obtain posterior parameter distribution
Interpret




Parameter estimation and model selection

Choose model:

Set of parameters to be varied
Prior ranges for those parameters
Compute likelihood function
Obtain posterior parameter distribution
Interpret






Parameter estimation and model selection

Choose model M: Choose model Ma:
Set of parameters to be varied Set of parameters to be varied
Prior ranges for those parameters Prior ranges for those parameters
Compute likelihood function Compute likelihood function

Obtain posterior parameter distribution Obtain posterior parameter distribution



Parameter estimation and model selection

Choose model M: Choose model Ma:
Set of parameters to be varied Set of parameters to be varied
Prior ranges for those parameters Prior ranges for those parameters ...
Compute likelihood function Compute likelihood function

Obtain posterior parameter distribution Obtain posterior parameter distribution



Parameter estimation and model selection

Choose model M;: Choose model My:
Set of parameters to be varied Set of parameters to be varied
Prior ranges for those parameters Prior ranges for those parameters ...
Compute likelihood function Compute likelihood function
Obtain posterior parameter distribution Obtain posterior parameter distribution

Assign model probability P(M1) Assign model probability P(My) ...



Parameter estimation and model selection

Choose model M;: Choose model Ma:
Set of parameters to be varied Set of parameters to be varied
Prior ranges for those parameters Prior ranges for those parameters ...
Compute likelihood function Compute likelihood function
Obtain posterior parameter distribution Obtain posterior parameter distribution
Assign model probability P(M1) Assign model probability P(My) ...

Compute model likelihoods, known as the
Update prior model probabilities to posterior ones
[option: multi-model inference by bayesian model averaging]
Interpret
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Model selection is the study of sets of parameters. It is a higher level of
inference than parameter estimation.

In many contexts we don’t actually know which parameters are the relevant
ones. A particular situation is deciding if a new parameter, describing some
new physical effect seen in data, is actually required.

A suitable baseline cosmological model to consider is the simplest one
giving an adequate fit to current data. It is a spatially-flat adiabatic

ACDM model with five fundamental parameters and two

phenomenological ones.
(2, matter density
Q baryon density
0, radiation density
h hubble parameter
adiabatic density perturbation amplitude

reionization optical depth

bias parameter (or parameters)




There are many, many ways in which this

base cosmological model can be extended.




Table 2. Candidate parameters: those which might be relevant for cosmological observations, but for which there is presently
no convincing evidence requiring them. They are listed so as to take the value zero in the base cosmological model. Those
above the line are parameters of the background homogeneous cosmology, and those below describe the perturbations. Of the
latter set, the first six refer to adiabatic perturbations, the next three to tensor perturbations, and the remainder to isocurvature
perturbations.

Qp spatial curvature
N, — 3.04 effective number of neutrino species (CMBFAST definition)
neutrino mass for species ‘¢’
[or more complex neutrino properties]
(warm) dark matter mass
dark energy equation of state
redshift dependence of w
[or more complex parametrization of dark energy evolution]
effects of dark energy sound speed
topological identification scale
[or more complex parametrization of non-trivial topology]
redshift dependence of the fine structure constant

redshift dependence of the gravitational constant

scalar spectral index
dn/dInk running of the scalar spectral index
kcut large-scale cut-off in the spectrum
Afeature amplitude of spectral feature (peak, dip or step) ...
Kfeature ... and its scale
[or adiabatic power spectrum amplitude parametrized in N bins]
fNL quadratic contribution to primordial non-gaussianity
[or more complex parametrization of non-gaussianity]
T tensor-to-scalar ratio
r 4+ 8nT violation of the inflationary consistency equation
running of the tensor spectral index
CDM isocurvature perturbation ...
... and its spectral index ...
... and its correlation with adiabatic perturbations ...
... and the spectral index of that correlation
[or more complicated multi-component isocurvature perturbation]
cosmic string component of perturbations







How do we compare different cosmological models (i.e.
different choices of fundamental parameters)?
Can we say which model is best?

if we add extra parameters, typically the
maximum likelihood will increase, even if the new
parameter actually has no physical relevance.
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Can we say which model is best?

if we add extra parameters, typically the
maximum likelihood will increase, even if the new
parameter actually has no physical relevance.

as we add extra parameters, the uncertainties
on existing parameters increase, and eventually we learn

nothing useful about anything.

We need a way of pena
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information criterion, or maximizes the evi @lence




Akaike information criterion  (kaike 1974)
Bayesian information criterion (schwarz 1978

BayeSian eVidence (Jeffreys 1961 etc)

The preferred model is the one which minimizes the
information criterion, or maximizes the evidence.

NB: the ratio of evidences between two models is also known as the Bayes factor.






The is the most powerful of these. It is a full
implementation of Bayesian inference, and literally gives the probability
of the data given the model (note, not the probability of particular
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the posterior model probability. However it can be hard to calculate,
being a highly-peaked multi-dimensional integral.
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The is the most powerful of these. It is a full
implementation of Bayesian inference, and literally gives the probability
of the data given the model (note, not the probability of particular
parameter values). If multiplied by the prior model probability it gives
the posterior model probability. However it can be hard to calculate,
being a highly-peaked multi-dimensional integral.

The was derived using Bayesian statistics.
It gives a crude approximation to the Bayesian evidence. While it can
give guidance, the assumptions for its validity are questionable in
cosmological applications (eg parameter degeneracies).

The was derived using information theory
techniques. It gives an approximate minimization of the so-called
Kullback-Leibler information entropy, which is a measure of the
difference between two probability distributions. It is however
“dimensionally inconsistent’.
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Statistical fluke: By definition important only if people
do their error analysis wrongly.

Publication bias: Only positive results get published,
enhancing their apparent statistical significance
(recognised as a major problem in clinical trials).

Inappropriate “a posteriori” reasoning: choosing
“interesting” features from the data and assessing their
significance via Monte Carlo analyses.

Neglect of model dimensionality: using parameter
estimation rather than model selection.
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significantly less than one.
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Application to WMAP3

The parameter placed in the most interesting position is the scalar
spectral index, which for the first time is apparently measured as

significantly less than one.

s +0:015 '
405 0.951_0'019 Extended model favored
Does a result that is more than T

3-sigma need a model selection
analysis? Definitely yes - Lindley’s
paradox operates most strongly in
the range 2 to 4 sigma.

Information content I




Nested Sampling: CosmoNest

Computing the evidence accurately had been only just within reach of
supercomputers. We have recently implemented Skilling’s Nested
Sampling algorithm for cosmology.
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Nested Sampling: CosmoNest

Computing the evidence accurately had been only just within reach of

supercomputers. We have recently implemented Skilling’s Nested
Sampling algorithm for cosmology.

Skilling (2004) rewrote the evidence as

—/L pr(0)do = /L X)dX

where X is the fractional prior mass.

This can then be evaluated using Monte
Carlo samples to trace the variation of
likelihood with prior mass, peeling away
thin nested isosurfaces of equal likelihood.



http://www.cosmonest.org
http://www.cosmonest.org

Nested Sampling

The method "walks’ a set of points (eg 300) into the high-likelihood region
using replacement. The main difficulty in implementing the algorithm

successfully is in efficiently generating replacement points which are
uniformly sampled from the remaining prior volume.
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A model selection example:
spectral index from WMAP3

WMAP3 has been interpretted as giving ruling out the Harrison-
Zel'dovich ns = 1 spectrum and hence favouring inflation,

e.g. ng=0.95174913. Butthis ignores model dimensionality.
Using CosmoNest we find
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Datasets Model In E

HZ 0.0
varying n 0.34 £ 0.26

HZ 0.0
varying n 1.99 + 0.26
nand r (uniformonr) -145+0.45
nand r (logonr) 190 + 0.24

WMAP only

WMAP+all

WMAP alone cannot distinguish between HZ and a varying
spectral index.

Adding other datasets starts to prefer varying n, but
only at odds of about 8:1.

However inflation predicts we should include both n andr,
which is actually disfavoured as compared to HZ...

... unless you use a logarithmic prior for r, which puts you back
close to the r=0 case.






Model selection for survey comparison/design

As well as applying to present data, a powerful tool is
forecasts of the model selection capabilities of upcoming
experiments, eg dark energy surveys.

simulate data for a fiducial model (eg LambdaCDM);

estimate expected parameter uncertainties about that model;

interpret that if the true model is outside the contours,
LambdaCDM is excluded.



Model selection for survey comparison/design

As well as applying to present data, a powerful tool is
forecasts of the model selection capabilities of upcoming
experiments, eg dark energy surveys.

simulate data for a fiducial model (eg LambdaCDM);

estimate expected parameter uncertainties about that model;

interpret that if the true model is outside the contours,
LambdaCDM is excluded.

simulate data at each point in parameter plane;

compute Bayes factor (ie evidence ratio) of full model versus
eg LambdaCDM at each point.
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evolution).
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Fisher information matrix drawbacks

Upcoming experiments are usually motivated not by their ability
to constrain parameters, but by their ability to discover new

physical effects, requiring new parameters (e.g. dark energy
evolution).

Usually interpretted as giving an experiment’s ability to rule out
_lambdaCDM in favour of a dark energy model whose data is
nowever not that simulated.

The criterion for ruling out LambdaCDM is exactly the same as
that used to rule out any other value in the plane, e.g. w=-0.99.
Special status of LambdaCDM is not recognised.

Fisher matrix approach often assumes a gaussian likelihood.
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Dark energy forecasting

w=wy+ (1 —a)w,

LN Contour levels are

Delta In E of 0, 2.5, 5 Contour levels are

one and two sigma

SNAP SN-la
——— with sys




SNAP SN-la JEDI SN-la

ALPACA SN-la WFMOS BAO







(Almost) current dark energy data

CMB shift+BAO(SDSS)+SN

Model

WMAP+SDSS+ Aln E B e parameter constraints

B Model T: A

Riess04 0.0 5.7 30.5 Qm = 0.26 = 0.03, Hy = 65.5 £ 1.0
LambdaCDM it 0.0 65 945 O = 0.25 =+ 0.03, Ho = 70.3 % 1.0
. [ ModellIT constant w, Aatiprion Sl ok Bl R
Riess04 —0.1+0.1 6.4 28.6 Qm =0.27+£0.04, Hy =64.0 £ 1.4, w < —0.81, —0.70°
Astier05 —-1.3+£0.1 &80 93.3 Qm =0.24 £0.03, Hy = 69.8 £1.0, w < —0.90, —0.83"
O NeRI@WA Y | = | 20 Modellll constantw, flatprior -2<w<-033 |
Riess04 —-1.0+0.1 7.3 28.6 Qm =0.27+0.04, Hy =64.0 £ 1.5, w = —0.87 £ 0.1
Astier05 —-1.84+0.1 82 933 Qm =0.25+£0.03, Ho = 70.0 £ 1.0, w = —0.96 £ 0.08
_ Model IV: wo—w,, flat prior —2 < wp < —0.33, —1.33 < w, < 1.33
Riess04 () S5 Qm = 0.27+£0.04, Hy = 64.1 £ 1.5, wo = —0.83 £ 0.20, wy = ——°
WO-Wa Astier05 8.2 93.3 Qm =0.254+0.03, Hy = 70.0 £ 1.0, wo = —0.97 £ 0.18, wg = ——"
_ Model V: wo—wq, —1 < w(a) <1 for 0 <z <2

Riess04 9.1 285 Qm = 0.28+0.04, Hy = 63.6 + 1.3, wo < —0.78, —0.60%, w, = —0.07 & 0.34
Astier05 11.1 93.3 4 = 0.24 4+ 0.03, Ho = 69.5 & 1.0, wo < —0.90, —0.80°%, w, = 0.12 =+ 0.22
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Under particular prior assumptions we made (the effect of
whose variation is readily tested), the answers are ...

If LambdaCDM is right, are upcoming
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to compute but nested sampling makes it feasible.
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A rigorous approach to defining the Standard Cosmological Model requires
Model Selection techniques. Such techniques can positively support
simpler models, and set more stringent conditions for inclusion of new
parameters.

The Bayesian evidence is the most powerful available tool. It is challenging
to compute but nested sampling makes it feasible.

An application to adiabatic models shows current data are comparably
well explained by the Harrison-Zel’dovich model and a varying spectral
index model, with slight preference for the latter.

Model selection forecasting is a powerful new tool for experimental design
and comparison, and is readily applied to dark energy experiments.






