Planck and neutrino physics

Antony Lewis

http://cosmologist.info/

on behalf of the Planck collaboration

Outline

- Planck recap
- What we measure
- What we can learn from it
- Constraining on neutrino physics

PLANCK Telescope Instruments Shields Service Module Solar array I/F to Ariane LOS Blue book

Instrument Characteristic	LFI		HFI						
Detector Technology	HEMT arrays			Bolometer arrays					
Center Frequency [GHz]	30	44	70	100	143	217	353	545	857
Bandwidth $(\Delta \nu / \nu)$	0.2	0.2	0.2	0.33	0.33	0.33	0.33	0.33	0.33
Angular Resolution (arcmin)	33	24	14	10	7.1	5.0	5.0	5.0	5.0
$\Delta T/T$ per pixel (Stokes I) ^a	2.0	2.7	4.7	2.5	2.2	4.8	14.7	147	6700
$\Delta T/T$ per pixel (Stokes $Q~\&U)^a \ldots$	2.8	3.9	6.7	4.0	4.2	9.8	29.8		

^a Goal (μ K/K, 1σ), 14 months integration, square pixels whose sides are given in the row "Angular Resolution".

Planck focal plane

~ SŽ null

ESA/AOES Medialab

14 May 2009

DISTANT OUTPOST: HERSCHEL AND PLANCK IN ORBIT

Corrections to stay in Lissajous L2 orbit every 30 days

Full sky every 6-7 months: this year 2 sky surveys, then next year 4 full scans

Make full-sky maps at many frequencies

CMB Blackbody – can separate or model foregrounds

For parameter analysis actually cut and model rather than clean

Evolution of the universe

Hu & White, Sci. Am., 290 44 (2004)

Where do the perturbations come from?

CMB temperature

 10^{-5} perturbations \Rightarrow Linear theory predictions very accurate

⇒ Gaussian fluctuations from inflation remain Gaussian

Observed CMB temperature power spectrum

Primordial perturbations + known physics with unknown parameters

Observations

Constrain theory of early universe + evolution parameters and geometry

Detailed measurement of 6 power spectrum acoustic peaks

Accurate measurement of cosmological parameters?

YES: some particular parameters measured very accurately

0.1% accurate measurement of the acoustic scale:

$$\theta_* = (1.04148 \pm 0.00066) \times 10^{-2} = 0.596724^{\circ} \pm 0.00038^{\circ}$$

But need full cosmological model to relate to underlying physical parameters..

e.g. Geometry: curvature

We see:

or is it just closer??

We see:

Degeneracies between parameters

Credit: Anthony Challinor

1. Assume a model

LCDM baseline model:

Flat, dark matter, cosmological constant, neutrinos, photons: six free parameters. Assume 3 neutrinos, minimal-mass hierarchy with $\sum m_{\nu} = 0.06 \, \mathrm{eV}$.

	Planck			
Parameter	Best fit	68% limits		
$\Omega_{\rm b}h^2$	0.022068	0.02207 ± 0.00033		
$\Omega_{\rm c}h^2$	0.12029	0.1196 ± 0.0031		
100θ _{MC}	1.04122	1.04132 ± 0.00068		
τ	0.0925	0.097 ± 0.038		
n _s	0.9624	0.9616 ± 0.0094		
$ln(10^{10}A_s)$	3.098	3.103 ± 0.072		
Ω_{Λ}	0.6825	0.686 ± 0.020		
Ω_{m}	0.3175	0.314 ± 0.020		
σ ₈	0.8344	0.834 ± 0.027		
z _{re}	11.35	$11.4^{+4.0}_{-2.8}$		
H_0	67.11	67.4 ± 1.4		

2. Use additional data to break degeneracies

CMB Lensing

Weak lensing to break CMB degeneracies

- smooths the power spectra
- Introduces non-Gaussianity: use trispectrum to reconstruct lensing potential ϕ

Concept: measure magnification and shear as function of position on sky

measure $\kappa(\widehat{\pmb{n}})$

Planck lensing potential reconstruction (north and south galactic)

Note – about half signal, half noise, not all structures are real map is effectively Wiener filtered

Planck lensing power spectrum

External data used for joint constraints

- WMAP polarization ("WP") on large scales constrains optical depth τ
- High-L data from other CMB (ACT/SPT; "highL")
 - useful for constraining foreground model
- BAO: baryon oscillations measures the comoving acoustic oscillation scale in distribution of galaxies (z~0.6; scale is bump in correlation function)
 - very consistent with Planck for LCDM model
- H₀: local measurements of Hubble parameter (Riess et al)
 - significantly higher H_0 than favoured by Planck
- Supernovae: marginally consistent with Planck

Neutrino physics with Planck

(using GR to measure neutrino densities)

Friedmann Equation:

$$H^2 = \frac{8\pi G}{3}\rho = \frac{8\pi G}{3}(\rho_{\gamma} + \rho_{\nu} + \rho_{m} + \rho_{DE})$$

- Expansion history sensitive to total neutrino energy density

Standard scenario:

- 3 neutrinos, coupled to photons, e^+/e^- until $T \sim 1 \text{MeV}$
- at $T \sim 0.5$ MeV electrons and positrons annihilate, heating photons

Thermal equilibrium before + entropy conservation ⇒

$$T_{\gamma} = \left(\frac{11}{4}\right)^{\frac{1}{3}} T_{\nu}$$

at late times. Both remain thermal distributions.

We measure $T_{CMB}^0=T_{\gamma}^0=2.726K$. So know $T_{\nu}^0{\sim}1.92K$

In general define $N_{\rm eff}$ to determine neutrino density

$$\rho_{\nu} = N_{\text{eff}} \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_{\gamma}$$

- 3 neutrinos with annihilation well after decoupling $\Rightarrow N_{\rm eff} = 3$
- 3 neutrinos with slight neutrino heating $\Rightarrow N_{\text{eff}} = 3.046$ (Mangano et al)
- Extra or sterile thermal neutrinos at same temperature $N_{\rm eff} = 3.046 + \Delta N$
- Extra neutrinos that are non-thermal or at different temperature gives non-integer change to $N_{\rm eff}$

Cosmology of massless neutrinos only sensitive to total $N_{\rm eff}$

- does not depend on distribution (could be any relativistic decoupled particles)

Neutrino impact on the CMB

- H(z) via ρ_{ν} : change to distances and perturbation growth rates
- Neutrino free streaming damping of small-scale perturbations

Note both effects also depend on what other components of the model are doing - constraints are generally model dependent

$$N_{eff} = 3$$
 vs. $N_{eff} = 4$ (fixing θ_*)

 Measured by amount of small-scale Damping

(first peak right after adjusting $\Omega_c h^2$ but also degenerate with n_s)

Fig. 27. Marginalized posterior distribution of $N_{\rm eff}$ for Planck+WP+highL (black) and additionally BAO (blue), the H_0 measurement (red), and both BAO and H_0 (green).

Note: H_0 'discrepancy' with Planck in LCDM more consistent if $N_{\text{eff}} > 3$

(note: other data points are moving)

Planck+WP+highL+BAO ⇒ N_{eff} < 4 at 99% confidence

Neutrino mass

Massless neutrinos contribute $\Omega_{\nu} \sim 10^{-5}$ today: negligible today

But large number density. If massive $\rho_{\nu} = n_{\nu} m_{\nu}$. With $N_{\rm eff} = 3.046$

$$\Omega_{\nu}h^2 = \frac{\sum m_{\nu}}{93.04 \text{ eV}}$$

High-redshift $\Rightarrow T \gg m_{\nu}$: behave like massless neutrinos Low-redshift $\Rightarrow T \ll m_{\nu}$: behave like cold dark matter

- \Rightarrow Linear CMB anisotropies cannot constrain $m_{\nu} \ll T_{*} \sim 1 \mathrm{eV}$ (recombination temperature)
- behave just like massless neutrinos until recombination
- do change H(z) at late times, but completely degenerate with e.g. H_0 , Ω_{Λ}

BUT: lensing is sensitive to lighter neutrinos, and other data (BAO) can break degeneracy

Approximate as three degenerate masses, parameterized by $\sum m_{
u}$

One-parameter extensions to LCDM model, constraints from *Planck* TT

	Planck+WP	Planck+WP+BAO	Planck+WP+highL	Planck+WP+highL+BAO		
Parameter	Best fit 95% limits					
Ω_K	-0.0105 $-0.037^{+0.043}_{-0.049}$	$0.0000 0.0000^{+0.0066}_{-0.0067}$	-0.0111 $-0.042^{+0.043}_{-0.048}$	$0.0009 -0.0005^{+0.0065}_{-0.0066}$		
$\Sigma m_{\nu} [\mathrm{eV}] \ldots$	0.022 < 0.933	0.002 < 0.247	0.023 < 0.663	0.000 < 0.230		
<i>N</i> _{eff}	$3.08 3.51^{+0.80}_{-0.74}$	$3.08 3.40^{+0.59}_{-0.57}$	$3.23 \qquad 3.36^{+0.68}_{-0.64}$	3.22 $3.30^{+0.54}_{-0.51}$		
$Y_{\rm P}$	$0.2583 0.283^{+0.045}_{-0.048}$	$0.2736 0.283^{+0.043}_{-0.045}$	$0.2612 0.266^{+0.040}_{-0.042}$	0.2615 $0.267^{+0.038}_{-0.040}$		
$dn_s/d\ln k$	$-0.0090 \ -0.013^{+0.018}_{-0.018}$	$-0.0102 \ -0.013^{+0.018}_{-0.018}$	-0.0106 $-0.015^{+0.017}_{-0.017}$	-0.0103 $-0.014^{+0.016}_{-0.017}$		
$r_{0.002}$	0.000 < 0.120	0.000 < 0.122	0.000 < 0.108	0.000 < 0.111		
w	-1.20 $-1.49^{+0.65}_{-0.57}$	-1.076 $-1.13^{+0.24}_{-0.25}$	$-1.20 -1.51^{+0.62}_{-0.53}$	-1.109 $-1.13^{+0.23}_{-0.25}$		

Table 10. Constraints on one-parameter extensions to the base Λ CDM model. Data combinations all include *Planck* combined with *WMAP* polarization, and results are shown for combinations with high- ℓ CMB data and BAO. Note that we quote 95% limits here.

No evidence for $m_{\nu} > 0$, or $N_{\rm eff} > 3.046$ from *Planck*+BAO

But things to note:

Lensing spectrum fairly consistent with higher neutrino masses

Planck+lensing constraint is actually worse than Planck alone

TT spectrum favours strong lensing \Rightarrow disfavours $m_{\nu} > 0$ more than you'd expect

SZ and galaxy clusters (Paper XX)

- Number of clusters depends on matter perturbation amplitude σ_8
- Clusters contain hot gas: up-scatter CMB photon temperature
- See clusters in SZ, amount of signal depends on amount of gas and temperature
- Astrophysical modelling ⇒ relation between temperature and mass
- Measure N(m)
- Compare with prediction from cosmological model.

SZ prefers lower σ_8 than Planck TT

Fig. 11. 2D $\Omega_{\rm m}$ – σ_8 likelihood contours for the analysis with *Planck* CMB only (red); *Planck* SZ + BAO + BBN (blue); and the combined *Planck* CMB + SZ analysis where the bias (1-b) is a free parameter (black).

Evidence for neutrino mass??

Fig. 12. Cosmological constraints when including neutrino masses $\sum m_v$ from: *Planck* CMB data alone (black dotted line); *Planck* CMB + SZ with 1 – b in [0.7, 1] (red); *Planck* CMB + SZ + BAO with 1 – b in [0.7, 1] (blue); and *Planck* CMB + SZ with 1 – b = 0.8 (green).

(note: this is assuming one massive neutrino)

Or something wrong with astrophysical model and/or selection function, e.g. low 1-b

Beyond Gaussianity – general possibilities

Flat sky approximation:
$$\Theta(x) = \frac{1}{2\pi} \int d^2 l \ \Theta(l) e^{ix \cdot l}$$
 $(\Theta = T)$

Gaussian + statistical isotropy

$$\langle \Theta(l_1)\Theta(l_2)\rangle = \delta(l_1 + l_2)C_l$$

- power spectrum encodes all the information
- modes with different wavenumber are independent

Higher-point correlations

Gaussian: can be written in terms of C_l

Non-Gaussian: non-zero connected *n*-point functions

Bispectrum

Flat sky approximation:
$$\langle \Theta(l_1)\Theta(l_2)\Theta(l_3)\rangle = \frac{1}{2\pi}\delta(l_1+l_2+l_3)b_{l_1l_2l_3}$$

If you know $\Theta(l_1)$, $\Theta(l_2)$, sign of $b_{l_1l_2l_3}$ tells you which sign of $\Theta(l_3)$ is more likely

Trispectrum

$$\langle \Theta(\mathbf{l}_1)\Theta(\mathbf{l}_2)\Theta(\mathbf{l}_3)\Theta(\mathbf{l}_4)\rangle_C = (2\pi)^{-2}\delta(\mathbf{l}_1 + \mathbf{l}_2 + \mathbf{l}_3 + \mathbf{l}_4)T(\mathbf{l}_1, \mathbf{l}_2, \mathbf{l}_3, \mathbf{l}_4)$$

$$\langle \Theta(\mathbf{l}_1)\Theta(\mathbf{l}_2)\Theta(\mathbf{l}_3)\Theta(\mathbf{l}_4)\rangle_C = \frac{1}{2} \int \frac{d^2\mathbf{L}}{(2\pi)^2} \delta(\mathbf{l}_1 + \mathbf{l}_2 + \mathbf{L})\delta(\mathbf{l}_3 + \mathbf{l}_4 - \mathbf{L}) \mathbb{T}_{(\ell_3\ell_4)}^{(\ell_1\ell_2)}(L) + \text{perms.}$$

N-spectra...

Millennium simulation

Near-equilateral to flattened:

Squeezed bispectrum is a *correlation* of small-scale power with large-scale modes

e.g. $\chi = \chi_0 (1 + f_{NL} \chi_0)$

Planck only sees expected lensing-induced modulations - no evidence for primordial non-Gaussianities

Table 8. Results for the $f_{\rm NL}$ parameters of the primordial local, equilateral, and orthogonal shapes, determined by the KSW estimator from the SMICA foreground-cleaned map. Both independent single-shape results and results marginalized over the point source bispectrum and with the ISW-lensing bias subtracted are reported; error bars are 68% CL.

	Independent KSW	ISW-lensing subtracted KSW
SMICA		
Local	9.8 ± 5.8	2.7 ± 5.8
Equilateral	-37 ± 75	-42 ± 75
Orthogonal	-46 ± 39	-25 ± 39

Diagonal squeezed trispectra
$$|k_1| \sim |k_2|$$
, $|k_3| \sim |k_4|$, $|k_1 + k_2| = |k_3 + k_4| \ll |k_2|$, $|k_3|$

Trispectrum = power spectrum of modulation

e.g.
$$\chi = \chi_0 \big(1 + f_{NL} \chi_0 \, \big)$$

$$\tau_{NL} \sim f_{NL}^2$$

or
$$\chi = \chi_0 (1 + \phi)$$
 (any correlation, $\tau_{NL} > f_{NL}^2$)

Primordial curvature modulation:

z~1000

 $T(\hat{\boldsymbol{n}}) \approx T_{\mathrm{g}}(\hat{\boldsymbol{n}})[1 + \phi(\hat{\boldsymbol{n}}, r_*)] \equiv T_{\mathrm{g}}(\hat{\boldsymbol{n}})[1 + f(\hat{\boldsymbol{n}})]$

Squeezed shape ⇒ large-scale modulation

Complication: Kinematic dipole signal

Modulation

$$\Delta\Theta(\hat{\boldsymbol{n}}) \rightarrow \left[1 + \hat{\boldsymbol{n}} \cdot \boldsymbol{v} + T \frac{\mathrm{d}^2 I_{\nu} / \mathrm{d}T^2}{\mathrm{d}I_{\nu} / \mathrm{d}T} \hat{\boldsymbol{n}} \cdot \boldsymbol{v}\right] \Delta\Theta(\hat{\boldsymbol{n}})$$
$$= \left(1 + \left[x \coth(x/2) - 1\right] \hat{\boldsymbol{n}} \cdot \boldsymbol{v}\right) \Delta\Theta(\hat{\boldsymbol{n}}),$$

$$x \equiv h v / k_b T$$

Illustrated for $\frac{v}{c} = 0.85$

Aberration

$$\widehat{n} \to \widehat{n} + \nabla(\widehat{n} \cdot v)$$

- just like a dipole lensing convergence

Subtract aberration effect ⇒

Local trispectrum often measured by

$$\hat{\tau}_{\rm NL} \approx N^{-1} \sum_{L=L_{\rm min}}^{L_{\rm max}} \frac{2L+1}{L^2(L+1)^2} \frac{\hat{C}_L^f}{C_L^{\zeta_\star}} \tag{optimal to percent level}$$
 Conventional normalization to primordial power

modulation power

Planck τ_{NL} trispectrum constraint

Estimator result $\hat{\tau}_{NL} = 442$

Gaussian simulations:

$$-452 < \hat{\tau}_{NL} < 835 \text{ at } 95\% \text{ CL } (\sigma_{\tau_{NL}} \approx 335)$$

Consistent with Gaussian null hypothesis (octopole has small weight)

Conservative upper limit, allowing octopole to be physical using Bayesian posterior

$$\tau_{\rm NL} < 2800$$
 at 95% CL

Power modulation dipole? Result for amplitude at $l \leq l_{\text{max}}$

Planck 217x143 (kinematic subtracted) 10² 1% 0.1% 10^{3} 10²

Modulation < 0.2% for $l_{\text{max}} = 1500 - 2000$

NG conclusions

- No evidence for primordial non-Gaussianity yet
- Dipole modulation signal clearly seen
- Large-scale modulation power "nearly" consistent with zero after kinematic subtraction going to high l
- Marginally anomalous but a posteriori power asymmetry at $l \le 500$ (consistent with WMAP and previous analyses)
- Dipole power modulations at low L do not persist to high L after kinematic subtraction: |f| < 0.2% at $l_{\rm max} = 2000$. (but possible foreground issues, ongoing work..)

Planck parameters - conclusions

- Planck measures *combinations* of parameters to high precision
- Some individual parameter constraints model dependent, or require additional data
- CMB lensing just starting to be useful much more to come (SPT, ACTpol, SPTpol, POLARBEAR...)
- First Planck TT power spectrum results gives no strong evidence for deviations from LCDM with standard 3.046 light neutrinos
- BUT, some interesting discrepancies. Astrophysics? Possible $m_{\nu} \sim 0.2 {\rm eV?}$ Modified gravity?? upcoming CMB lensing data will be very useful

 Next year: Planck polarization, +4 sky surveys of data (+ many analysis improvements)