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the Large Synoptic Survey Telescope

LSST in a few numbers

- 1000 images each night, each one is 3.2 GB and 40 full moons
=⇒ 15 TB/night for 10 years

- Covers 18,000 square degrees (40% of the sky)
- Tens of billions of objects, each one observed ∼ 1000 times 1



what does it look like ?

HSC-SSP Data Release 1
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what does it look like ?

HSC

SDSS

z~0.19 z~0.30 z~0.37 z~0.44

Huang et al. (2017), arXiv:1707.01904
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the challenge for modern surveys

=⇒ Modern surveys will provide large volumes of high quality data

A Blessing

• Unprecedented statistical power
• Great potential for new discoveries

A Curse

• Existing methods are reaching their limits (computational cost,
accuracy) at every step of the science analysis

• Control of systematic uncertainties becomes paramount

=⇒ Dire need for novel data analysis techniques to fully realize the
potential of modern surveys.
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Outline of this talk

1. Deep residual networks for the detection of gravitational lenses

2. Deep Generative Models for modeling galaxy morphologies

3. Graph convolutional networks for cosmological simulations

4. Conclusion
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Deep residual networks for the
detection of gravitational lenses



Galaxy-Galaxy Strong Lensing
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examples of strong lenses
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example of application: gravitational time delays

∆tij =
1+ zL
c

DL DS
DLS︸ ︷︷ ︸

∝ H−1
0

[
(θi − β)2

2
− ψ(θi) +
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2
+ ψ(θj)
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time delays of HE0435-1223 (Bonvin et al. 2017)
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time delays of HE0435-1223 (Bonvin et al. 2017)
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the problem: finding strong lenses
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automated lens searches: RingFinder (Gavazzi et al. 2014)

gri composite g− αi detected areas HST images

Visual inspection time required
∼ 30 person-minutes / deg2
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extrapolation to future surveys

CFHTLS DES LSST
100

101

102

103

104

105 number of strong lenses

Gavazzi et al. (2014), Collett (2015)

=⇒ LSST would require an estimated 104 man-hours.

11



extrapolation to future surveys

CFHTLS DES LSST
100

101

102

103

104

105 number of strong lenses
man-hour required for visual inspection (RingFinder)

Gavazzi et al. (2014), Collett (2015)

=⇒ LSST would require an estimated 104 man-hours.

11



extrapolation to future surveys

CFHTLS DES LSST
100

101

102

103

104

105 number of strong lenses
man-hour required for visual inspection (RingFinder)

Gavazzi et al. (2014), Collett (2015)

=⇒ LSST would require an estimated 104 man-hours.

11



How can we robustly detect these rare objects
without needing an army of grad students ?
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Conventional Convolutional Neural Network
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residual learning

Image credit: He et al. (2015)

• Learning the difference to the identity (He et al. 2015)

• Easier to initialize and to train in deep architectures (> 1000
layers)
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CMU DeepLens: deep residual learning for strong lens finding

Lanusse et al. (2017)

• Deep residual network (46 layers)
with pre-activated bottleneck residual units

• Training on simulated LSST lenses:

• Classification of 45x45 images in 350 µs
=⇒ 9 hours to classify a sample of 108 lens
candidates on a single GPU (Nvidia Titan X)
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performance on simulations

Highest probability lenses

True Positive Rate =
TP

TP+ FN

• TP: True Positives
• FN: False Negatives

False Positive Rate =
FP

FP+ TN

• FP: False Positives
• TN: True Negatives
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Euclid strong lens finding challenge

Ground based simulations Space based simulations
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Euclid strong lens finding challenge

• CMU DeepLens wins over 24 other methods (including other
CNN methods) in space and ground challenge.

• Significantly outperforms human classification accuracy.
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takeaway message

• An example of Deep Learning allowing us to handle the volume
and data rate of future surveys

• Our automated lens finder is faster and more reliable than
human volunteers.

• Larger and more robust samples for the science analysis.

• Other uses for automated classification methods in LSST:
photometric time series classification with recurrent neural
networks
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Deep Generative Models for
modeling galaxy morphologies



the weak lensing shape measurement problem
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the weak lensing shape measurement problem

Shape measurement biases

< e > = (1+m) γ + c

• Can be calibrated on image simulations
• How complex do the simulations need to be ?
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image simulations for shear calibration in the HSC survey
Mandelbaum, Lanusse, Leauthaud, Armstrong, et al. (2017)

Hyper Suprime-Cam Subaru Strategic Program

• 1400 sq. deg. in the wide survey down to 26.4 mag in i-band
• Essentially a smaller area precursor of LSST

19



image simulations for shear calibration in the HSC survey
Mandelbaum, Lanusse, Leauthaud, Armstrong, et al. (2017)

The GREAT3 approach

• Input galaxies from deep HST/ACS COSMOS images (25.2 imag)
• Apply a range of PSFs and noise levels sampled from the survey
• Measure response of shape measurement to a known shear

19



image simulations for shear calibration in the HSC survey
Mandelbaum, Lanusse, Leauthaud, Armstrong, et al. (2017)
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impact of galaxy morphology

Mandelbaum et al. (2013)

Mandelbaum et al. (2014)

The need for data-driven generative models
There can be two situations:

• Lack or inadequacy of physical model
• Extremely computationally expensive simulations
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Can we learn a model for the signal from the
data itself ?
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the evolution of deep generative models

• Deep Belief Network
(Hinton et al. 2006)

• Variational AutoEncoder
(Kingma & Welling 2014)

• Generative Adversarial
Network
(Goodfellow et al. 2014)

• Wasserstein GAN
(Arjovsky et al. 2017)
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Credit: Alec Radford
https://youtu.be/XNZIN7Jh3Sg
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the evolution of deep generative models

• Deep Belief Network
(Hinton et al. 2006)

• Variational AutoEncoder
(Kingma & Welling 2014)

• Generative Adversarial
Network
(Goodfellow et al. 2014)

• Wasserstein GAN
(Arjovsky et al. 2017)

Deep Convolutional GAN (Radford et al.
2016)
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the evolution of deep generative models

• Deep Belief Network
(Hinton et al. 2006)

• Variational AutoEncoder
(Kingma & Welling 2014)

• Generative Adversarial
Network
(Goodfellow et al. 2014)

• Wasserstein GAN
(Arjovsky et al. 2017)

Progressive growing of wGAN-GP (Karras et
al. 2017)
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visual Turing test

Mock - PixelCNN Real - Sloan Digital Sky Survey
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Auto-Encoding Variational Bayes (Kingma & Welling 2014)

Generative model
Dataset of N i.i.d. samples {xi} generated from

x ∼ pθ∗(x|z) pθ∗(z)

• z is a set of latent variables
• pθ is some parametric distribution
• θ∗ are the true model parameters

• In practice pθ(x|z) can be parameterized with neural networks,
e.g.:

pθ(x|z) = N (x| µθ(z), σ2θ(z))
where µθ and σ2θ are deep neural networks, with weights θ.

• Training the model amounts to estimating the parameters θ
maximizing the marginal likelihood pθ(x) =

∫
pθ(z)pθ(x|z)dz.

=⇒ Intractable and/or impractical in most situations
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recognition model and variational lower bound

• Efficiently estimating pθ(x) ≈ 1
K
∑K

k=1 pθ(x|zk)
requires sampling zk where pθ(x|zk) 6≈ 0.

• The true posterior pθ(z|x) is intractable.

The auto-encoding solution
Introduce an auxiliary inference model qφ(z|x)
to approximate the true posterior.

• Working out the Kullback-Leibler divergence between qφ(z|x)
and pθ(z|x) yields:
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Conditional Variational AutoEncoder (CVAE)

x

y

qφ(z | x, y)

Inference
network

z ∼ qφ(z|x, y)

y

pθ(x | z, y)

Genera-
tor network

x′ ∼ pθ(x | z, y)

Ravanbakhsh, Lanusse et al. (2017)

log(pθ(x | y)) ≥ −DKL(qφ(z | x, y)‖pθ(z))︸ ︷︷ ︸
Code regularisation

+Ez∼qφ(·|x,y)[log pθ(x | z, y)]︸ ︷︷ ︸
Reconstruction error
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modeling galaxy images from the Hubble Space Telescope

Experimental setup

• Training set: postage stamps from COSMOS HST/ACS survey
• Conditional model: Half-light radius, brightness, redshift
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testing the conditional generation
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morphological statistics

From top to bottom: Real COSMOS galaxies, CVAE samples, Parametric fits
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morphological statistics
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morphological statistics
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takeaway message

• Generative models are a data driven way of completing our
physical modeling

• Implementing these models inside the GalSim simulation
software used to simulate the LSST survey
- Adversarial code manipulation
- Properly handling COSMOS PSF and correlated noise

• Will allow for an extra degree of realism in LSST simulations
=⇒ Essential to the calibration of science pipeline

• Other uses for generative models: any time a complex image
prior is required (denoising, deconvolution, deblending, etc)
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Graph convolutional networks for
cosmological simulations



intrinsic alignment of galaxies

ε = εi + γ with < εi >= 0

Impact on dark energy constraints

Kirk et al. (2015)

< εε′ >︸ ︷︷ ︸
measured

= < γγ′ >︸ ︷︷ ︸
cosmological signal

+ < εiε
′
i >︸ ︷︷ ︸

II

+ < γε′i > + < εiγ
′ >︸ ︷︷ ︸

GI
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why does this happen ?

Kiessling et al. (2015)

• Tidal interactions with local gravitational potential
=⇒ Can be analytically modeled on large scales

• Much more complicated in details, no single model for all galaxy
types, impacted by baryonic physics

=⇒ Study requires expensive hydrodynamical simulation

31
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How to produce mock galaxy catalogs on large
cosmological volumes with realistic alignments

?
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Massive Black II simulation (Khandai et al, 2015)

• 100h−1Mpc hydrodynamical simulation ran to z = 0.06
• Corresponding dark matter only simulation 32



what quantities are we looking at ?

• Shape parameters: q = b
a s = c

a

• Misalignment angle: θ = arccos
(
|ê(dm)
a · ê(gal)g |

)
• Ellipticity-Direction correlation function: ω(r) =< |êa · r̂|2 > − 1

3

=⇒ Depends on redshift, galaxy types, stellar mass, baryons, merger
history...

33



what quantities are we looking at ?

0.00 0.25 0.50 0.75 1.00
q

0.2

0.4

0.6

0.8

1.0

s

• Shape parameters: q = b
a s = c

a

• Misalignment angle: θ = arccos
(
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example: impact of baryons (Tenneti et al. 2015)
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inpainting intrinsic aligments on N-body simulations

Massive Black II Dark Matter Only
Image credit: Tenneti et al. (2015)

=⇒ How to model this conditional distribution ?
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inpainting intrinsic aligments on N-body simulations

Massive Black II Dark Matter Only
Image credit: Tenneti et al. (2015)

gal ∼ p (stellar properties | dark matter properties)

=⇒ How to model this conditional distribution ?
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inpainting intrinsic aligments on N-body simulations

Massive Black II Dark Matter Only
Image credit: Tenneti et al. (2015)

gali ∼ p (M∗, θ, q?, s?, . . . | MDM,i, Vdisp,i,qDM,i, sDM,i, . . .)

=⇒ How to model this conditional distribution ?
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inpainting intrinsic aligments on N-body simulations
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first approach using a CVAE

• Use a CVAE to independently draw each galaxy

• Conditioned on Dark Matter subhalo properties:
mass, shape, orientation, local tidal field

• Predicts distribution of Stellar properties for each galaxy: stellar
mass, shape, misalignment angles, bulge to total ratio
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predicted galaxy shapes

37



predicted misalignment angles

38



Ellipticity-Direction correlation function

Fails to reproduce 2pt functions

• The galaxies are randomly misaligned
→ suppresses power evenly on all scales

• To reproduce 2pt functions, galaxies must point in a specific
direction with respect to their neighbors

39



Ellipticity-Direction correlation function

Fails to reproduce 2pt functions

• The galaxies are randomly misaligned
→ suppresses power evenly on all scales

• To reproduce 2pt functions, galaxies must point in a specific
direction with respect to their neighbors 39



the cosmic web as a graph

MB II simulation, animation credit: Kim Albrecht
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spectral theory on graphs

Graph Fourier Transform
Defined by the eigendecomposition of the
graph Laplacian L = UUT

The graph Fourier transform of a signal f is

f̂ = UT f

• The convolution of a signal f with a filter gθ can be defined as

gθ ? f = U ĝθ UT f

Spectral graph convolutions are expensive

• Computing the graph Fourier transform of U is expensive for
large graphs

• Computing one convolution requires O(N2) operations
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deep learning on graphs (Kipf & Welling (2017))

• Convolution layer reduces to: gθ′ ? f = θ′0f − θ′1 D− 1
2 AD− 1

2 f

• Tractable graph convolutions using an approximation restricted
to first neighbors
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preliminary results with new model

• Model adapts mixture density networks and deep residual
networks to graphs

• Conditioned on Dark Matter subhalo properties of all galaxies in
the graph: mass, shape, local tidal field

• Predicts 3D orientations of all galaxies in the graph.

R [ h−1 Mpc]
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takeaway message

• Exciting new framework to empirically populate large volume
simulations with realistic galaxy populations

• Easily extendable to include merger tree information
• Extend/complement existing empirical/semi-analytical model

• Will add to the realism of cosmological simulations and allow us
to test IA mitigation techniques.

• Being implemented as part of the simulation pipeline for the LSST
DESC Second Data Challenge

• Neural networks on graphs are powerful tools for working with
non euclidean data.
=⇒ See Bronstein et al. 2017 (arXiv:1611.08097) for a recent
overview.
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Conclusion



conclusion

What can deep learning do for cosmology ?

• Model and analyze large volumes of complex datasets

• Open new and powerful ways to look at the data
• Image detection for finding rare astrophysical objects

• Data driven way of complementing our physical models
• Modeling realistic galaxy morphologies
• Modeling galaxy properties in numerical simulations

=⇒ Goes towards improving the accuracy of our cosmology
constraints.
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Any questions?
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